[MEDICAL CANNABIS].

“The cannabis plant has been known to humanity for centuries as a remedy for pain, diarrhea and inflammation.

Current research is inspecting the use of cannabis for many diseases, including multiple sclerosis, epilepsy, dystonia, and chronic pain.

In inflammatory conditions cannabinoids improve pain in rheumatoid arthritis and: pain and diarrhea in Crohn’s disease.

Despite their therapeutic potential, cannabinoids are not free of side effects including psychosis, anxiety, paranoia, dependence and abuse.

Controlled clinical studies investigating the therapeutic potential of cannabis are few and small, whereas pressure for expanding cannabis use is increasing.

Currently, as long as cannabis is classified as an illicit drug and until further controlled studies are performed, the use of medical cannabis should be limited to patients who failed conventional better established treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27215115

Stimulation of brain glucose uptake by cannabinoid CB2 receptors and its therapeutic potential in Alzheimer’s disease

Cover image

“Brain disorders, including Alzheimer’s disease (AD), often involve specific early alterations in the metabolism of glucose in the brain.

The idea of alleviating symptoms of dementia by boosting cerebral energy metabolism has been toyed with for decades, yet safe pharmacological agents with well characterized mechanism of action are still lacking.

In this sense, we have investigated here the local cerebral glucoregulatory potential of the endocannabinoid system in rodents.

Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations.

Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents.

In conclusion, the present results provide the first direct pharmacological evidence in vitroand in vivo of a role of CB2R in central glucoregulation.

Additionally, we found that glucoregulation by endogenous CB2R signalling is negatively affected by β-amyloidosis, thought to be the first pathological step in AD.

Therefore, it would be interesting to perform further studies to define how CB2R mediated glucoregulation contributes to the recently discovered therapeutic potential of CB2R agonists in animal models of AD”

http://www.sciencedirect.com/science/article/pii/S0028390816300879

Cannabinoid receptor 2 as a potential therapeutic target in rheumatoid arthritis

Logo of bmcmudis

“Some of cannabinoids, which are chemical compounds contained in marijuana, are immunosuppressive.

One of the receptors, CB receptor 1 (CB1), is expressed predominantly by the cells in the central nervous system, whereas CB receptor 2 (CB2) is expressed primarily by immune cells.

Theoretically, selective CB2 agonists should be devoid of psychoactive effects.

In this study, we investigated therapeutic effects of a selective CB2 agonist on arthritis.

The present study suggests that a selective CB2 agonist could be a new therapy for RA that inhibits production of inflammatory mediators from FLS, and osteoclastogenesis.

This is the first report of therapeutic effect of a selective CB2 agonist on CIA.

Although the effect was mild, optimization of dosage and/or treatment protocol might enhance the effect.

Perhaps, more potent selective CB2agonists might solve this problem.

Cannabinoids are pharmacologically active components of Cannabis sativa.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243420/

Synthetic cannabinoid receptor agonists and antagonists: implication in CNS disorders.

“Since the discovery of the cannabinoid receptors, numerous studies associate the endocannabinoid system with several physiological and pathological processes including cancer, appetite, fertility, memory, neuropathic and inflammatory pain, obesity, and neurodegenerative diseases.

Over the last two decades, several researches have been dedicated extensively on the cannabinoid receptors ligands since the direct activation of cannabinoid receptors results in several beneficial effects, in the brain and in the periphery.

During past years, cannabinoid CB1 and CB2 receptor ligands from plants or lab were rapidly developed and then various new structures were reported to be cannabinoids.

The CB1 and CB2 receptor ligands offer several therapeutic opportunities for several CNS-related diseases.

Based on the scientific literature, this review provides an overview of CB1 and CB2 receptor synthetic ligands obtained from drug research and in particular those synthesized for therapeutic purposes and potential clinical applications for central nervous system disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/27193072

Functional selectivity of CB2 cannabinoid receptor ligands at a canonical and non-canonical pathway.

“The CB2 cannabinoid receptor remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and non-canonical (arrestin recruitment) pathways. The non-classical cannabinoid, CP55940 was the most potent agonist for both pathways, while the classical cannabinoid ligand JWH133 was the most efficacious agonist amongst all the ligands profiled in cyclase assays. In the cyclase assay, other classical cannabinoids showed little (Δ9THC, KM233) to no efficacy (L759633 and L759656). Most aminoalkylindoles including WIN55212-2 were moderate efficacy agonists. The cannabilactone AM1710 was equi-efficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classical cannabinoid ligands failed to recruit arrestins, indicating a bias towards G protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and UR144, failed to recruit arrestin. WIN55212-2 was a low efficacy agonist for arrestin recruitment, while UR144 was arrestin biased with no significant inhibition of cyclase. Endocannabinoids were G protein biased with no arrestin recruitment. The diarylpyrazole antagonist, SR144528 was an inverse agonist in cyclase and arrestin recruitment assays while the aminoalkylindole AM630 and carboxamide JTE907 were inverse agonists in cyclase but low efficacy agonists in arrestin recruitment assays. Thus CB2 receptor ligands display strong and varied functional selectivity at both pathways. Therefore extreme care must be exercised when using these compounds to infer the role of CB2 receptors in vivo.”

http://www.ncbi.nlm.nih.gov/pubmed/27194477

Opposite roles of cannabinoid receptors 1 and 2 in hepatocarcinogenesis.

“The endocannabinoid system (ECS) exerts key roles in the development of liver fibrosis and fatty liver, two diseases that promote the development of hepatocellular carcinoma (HCC).

Although cannabinoids exert potent antitumour effects in vitro, the contribution of the ECS to carcinogenesis in vivo remains elusive.

CONCLUSIONS:

Similar to their role in fibrogenesis, CB1 and CB2 exert opposite effects on hepatocarcinogenesis and may provide novel therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pubmed/27196571

Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

“Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ9-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse.

These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability.”

http://www.ncbi.nlm.nih.gov/pubmed/27184925

Phytocannabinoids and cannabimimetic drugs: recent patents in central nervous system disorders.

“Starting from the chemical structure of phytocannabinoids, isolated from Cannabis sativa plant, research groups designed numerous cannabimimetic drugs.

These compounds according to their activities can be partial, full agonists and antagonists of cannabinoid receptors.

Anecdotal reports and scientific studies described beneficial properties of cannabinoids and their derivatives in several pathological conditions like neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases.

The cannabinoid CB1 receptor was considered particularly interesting for therapeutic approaches in neurological diseases, because primarily expressed by neurons of the central nervous system. In many experimental models, these drugs act via this receptor, however, CB1 receptor independent mechanisms have been also described. Furthermore, endogenous ligands of cannabinoid receptors, the endocannabinoids, are potent modulators of the synaptic function in the brain. In neurological diseases, numerous studies reported modulation of the levels of endocannabinoids according to the phase of the disease and its progression.

CONCLUSIONS:

Finally, although the study of the mechanisms of action of these compounds is still unsolved, many reports and patents strongly suggest therapeutic potential of these compounds in neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27184693

Cannabis in Pain Treatment: Clinical and Research Considerations

“Cannabinoids show promise as therapeutic agents, particularly as analgesics, but their development and clinical use has been complicated by recognition of their botanical source, cannabis, as a substance of misuse.

Although research into endogenous cannabinoid systems and potential cannabinoid pharmaceuticals is slowly increasing, there has been intense societal interest in making herbal (plant) cannabis available for medicinal use; 23 U.S. States and all Canadian provinces currently permit use in some clinical contexts.

Whether or not individual professionals support the clinical use of herbal cannabis, all clinicians will encounter patients who elect to use it and therefore need to be prepared to advise them on cannabis-related clinical issues despite limited evidence to guide care.

Expanded research on cannabis is needed to better determine the individual and public health effects of increasing use of herbal cannabis and to advance understanding of the pharmaceutical potential of cannabinoids as medications.

This article reviews clinical, research, and policy issues related to herbal cannabis to support clinicians in thoughtfully advising and caring for patients who use cannabis, and it examines obstacles and opportunities to expand research on the health effects of herbal cannabis and cannabinoids.

Perspective

Herbal cannabis is increasingly available for clinical use in the United States despite continuing controversies over its efficacy and safety. This article explores important considerations in the use of plant Cannabis to better prepare clinicians to care for patients who use it, and identifies needed directions for research.”

http://www.jpain.org/article/S1526-5900%2816%2900543-5/fulltext

“APS Issues New Guidance on Medical Marijuana for Pain”  http://www.medscape.com/viewarticle/863396

Potentiation of cannabinoid-induced cytotoxicity in Mantle Cell Lymphoma through modulation of ceramide metabolism

Logo of nihpa

“Ceramide accumulation is a widely described event in cancers after various treatments.

Ceramide levels are elevated in Mantle Cell Lymphoma (MCL) cells following treatment with cannabinoids.

In previous publications we and others observed that induction of ceramide accumulation by cannabinoids leads to apoptosis in MCL, glioma and pancreatic cancer.

Here, we investigated the pathways of ceramide accumulation in the MCL cell line Rec-1 using the stable endocannabinoid analogue R(+)-methanandamide (R-MA).

Our findings suggest that R-MA induces cell death in MCL via CB1-mediated upregulation of the de novo ceramide synthesis pathway.

This is the first study showing that the cytotoxic effect of a cannabinoid can be enhanced by modulation of ceramide metabolism.

The results suggest that interference with ceramide conversion may provide a tool to enhance the targeted cell death-promoting effects of cannabinoids in MCL and other malignant lymphomas overexpressing the CB1 receptor.

Cannabinoids have been suggested as a new non-toxic therapeutic option for cancer treatment.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077284/