Chronic administration with AM251 improves albuminuria and renal tubular structure in obese rats.

“Modulation of the endocannabinoid system as an anti-obesity therapeutic is well established, however the direct effects of CB1 antagonism on renal function and structure in a model of diet-induced obesity (DIO) are unknown. The aim of this study was to characterise the renal effects of the CB1 antagonist AM251 in a model of DIO.

Antagonism of CB1 with AM251 significantly reduced weight gain, systolic blood pressure, plasma leptin, and reduced albuminuria and plasma creatinine levels in obese rats.

Importantly, there was a significant reduction in tubular cross-section diameter in the obese rats treated with AM251. An improvement in albuminuria was likely due to the reduction in tubular size, reduced leptinemia and maintenance of megalin expression levels. In obese rats, AM251 did not alter diastolic blood pressure, sodium excretion, creatinine clearance or expression of the fibrotic proteins VEGF, TGFb1 and collagen IV in the kidney.

This study demonstrates that treatment with CB1 antagonist AM251 improves renal outcomes in obese rats.”

http://www.ncbi.nlm.nih.gov/pubmed/25804605

Alexandros Makriyannis is a professor in the Department of Medicinal Chemistry at Northeastern University, where his research group has synthesized many new compounds with cannabinoid activity… AM-251 — an inverse agonist at the CB1 cannabinoid receptor that is structurally related to SR141716A (rimonabant), but has a higher binding affinity with a Ki value of 7.5nM.”  http://en.wikipedia.org/wiki/List_of_AM_cannabinoids

Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. — an important medicinal plant

“Cannabis sativa L. (Cannabaceae) is an important medicinal plant well known for its pharmacologic and therapeutic potency…

These plants are selected to be used in mass cultivation for the production of biomass as a starting material for the isolation of THC as a bulk active pharmaceutical.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550375/

http://www.thctotalhealthcare.com/category/thc-delta-9-tetrahydrocannabinol/

 

New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds.

“Since the identification of the endocannabinoid system, two G protein-coupled receptors (GPCRs) of this complex system were identified and characterized: cannabinoid receptors type 1 (CB1R) and type 2 (CB2R).

In addition to orthosteric and subsequently allosteric ligands, new strategies have been used to target CBRs.

Bivalent ligands and multifunctional ligands acting at diverse biological targets have been designed, synthesized, and characterized for both CBRs. Due to their altered receptor binding and pharmacological profiles, they are interesting tools to explore CBR functions and their interactions with other physiological systems.

Moreover, this approach may bear therapeutic advantages in the therapy of CBR-related disorders, especially multifactorial diseases.

Promising prospects include anorectics with fewer side effects, analgesics with decreased tolerance, and therapeutics with multiple pharmacological activities for the treatment of cancer, inflammation, multiple sclerosis, Huntington’s and Alzheimer’s diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/25820617

Δ9-Tetrahydrocannabinol alone and combined with cannabidiol mitigate fear memory through reconsolidation disruption.

“Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the major constituents of the Cannabis sativa plant, which is frequently consumed by subjects exposed to life-threatening situations to relief their symptomatology.

It is still unknown, however, whether THC could also affect the maintenance of an aversive memory formed at that time when taken separately and/or in conjunction with CBD. The present study sought to investigate this matter at a preclinical level.

We report that THC (0.3-10mg/kg, i.p.) was able to disrupt the reconsolidation of a contextual fear memory, resulting in reduced conditioned freezing expression for over 22 days. This effect was dependent on activation of cannabinoid type-1 receptors located in prelimbic subregion of the medial prefrontal cortex and on memory retrieval/reactivation.

Since CBD may counteract the negative psychotropic effects induced by THC and has been shown to be a reconsolidation blocker, we then investigated and demonstrated that associating sub-effective doses of these two compounds was equally effective in attenuating fear memory maintenance in an additive fashion and in a dose ratio of 10 to 1, which contrasts with that commonly found in C. sativa recreational samples.

Of note, neither THC alone nor CBD plus THC interfered with anxiety-related behaviors and locomotor activity, as assessed in the elevated plus-maze test, at a time point coinciding with that used to evaluate their effects on memory reconsolidation.

Altogether, present findings suggest a potential therapeutic value of using THC and/or CBD to mitigate a dysfunctional aversive memory through reconsolidation disruption in post-traumatic stress disorder patients.”

http://www.ncbi.nlm.nih.gov/pubmed/25799920

http://www.thctotalhealthcare.com/category/post-traumatic-stress-disorder-ptsd/

Endocannabinoid signaling at the periphery: 50 years after THC.

“In 1964, the psychoactive ingredient of Cannabis sativa, Δ9-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide) (AEA) in 1992 and 2-arachidonoylglycerol (2-AG) in 1995.

Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize, and degrade them and that together form the eCB system (ECS). eCBs control basic biological processes including cell choice between survival and death and progenitor/stem cell proliferation and differentiation.

Unsurprisingly, in the past two decades eCBs have been recognized as key mediators of several aspects of human pathophysiology and thus have emerged to be among the most widespread and versatile signaling molecules ever discovered.

Here some of the pioneers of this research field review the state of the art of critical eCB functions in peripheral organs. Our community effort is aimed at establishing consensus views on the relevance of the peripheral ECS for human health and disease pathogenesis, as well as highlighting emerging challenges and therapeutic hopes.”

http://www.ncbi.nlm.nih.gov/pubmed/25796370

Cannabinoids for the Treatment of Chronic Non-Cancer Pain: An Updated Systematic Review of Randomized Controlled Trials.

“An updated systematic review of randomized controlled trials examining cannabinoids in the treatment of chronic non-cancer pain was conducted according to PRISMA guidelines for systematic reviews reporting on health care outcomes.

Eleven trials published since our last review met inclusion criteria.

The quality of the trials was excellent.

Seven of the trials demonstrated a significant analgesic effect.

Several trials also demonstrated improvement in secondary outcomes (e.g., sleep, muscle stiffness and spasticity).

Adverse effects most frequently reported such as fatigue and dizziness were mild to moderate in severity and generally well tolerated.

This review adds further support that currently available cannabinoids are safe, modestly effective analgesics that provide a reasonable therapeutic option in the management of chronic non-cancer pain.”

http://www.ncbi.nlm.nih.gov/pubmed/25796592

http://www.thctotalhealthcare.com/category/pain-2/

The endocannabinoid system and its therapeutic implications in rheumatoid arthritis.

“Since the discovery of the endogenous receptor for Δ9-tetrahydrocannabinol, a main constituent of marijuana, the endocannabinoid system (comprising cannabinoid receptors and their endogenous ligands, as well as the enzymes involved in their metabolic processes) has been implicated as having multiple regulatory functions in many central and peripheral conditions, including rheumatoid arthritis (RA).

RA is an immune-mediated inflammatory disease that is associated with the involvement of many kinds of cells (such as fibroblastlike synoviocytes [FLSs], osteoclasts, T cells, B cells, and macrophages) and molecules (such as interleukin-1β, tumor necrosis factor-α, interleukin-6, matrix metalloproteinases [MMPs], and chemokines). Increasing evidence suggests that the endocannabinoid system, especially cannabinoid receptor 2 (CB2), has an important role in the pathophysiology of RA.

Many members of the endocannabinoid system are reported to inhibit synovial inflammation, hyperplasia, and cartilage destruction in RA.

In particular, specific activation of CB2 may relieve RA by inhibiting not only the production of autoantibodies, proinflammatory cytokines, and MMPs, but also bone erosion, immune response mediated by T cells, and the proliferation of FLSs.

In this review, we will discuss the possible functions of the endocannabinoid system in the modulation of RA, which may be a potential target for treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25791728

http://www.thctotalhealthcare.com/category/rheumatoid-arthritis-2/

 

A PET study comparing receptor occupancy by five selective cannabinoid 1 receptor antagonists in non-human primates.

“There is a medical need for safe and efficacious anti-obesity drugs with acceptable side effect profiles. To mitigate the challenge posed by translating target interaction across species and balancing beneficial vs. adverse effects, a positron emission tomography (PET) approach could help guide clinical dose optimization. Thus, as part of a compound differentiation effort, three novel selective CB1 receptor (CB1R) antagonists, developed by AstraZeneca (AZ) for the treatment of obesity, were compared with two clinically tested reference compounds, rimonabant and taranabant, with regard to receptor occupancy relative to dose and exposure. A total of 42 PET measurements were performed in 6 non-human primates using the novel CB1R antagonist radioligand [11C]SD5024. The AZ CB1R antagonists bound in a saturable manner to brain CB1R with in vivo affinities similar to that of rimonabant and taranabant, compounds with proven weight loss efficacy in clinical trials. Interestingly, it was found that exposures corresponding to those needed for optimal clinical efficacy of rimonabant and taranabant resulted in a CB1R occupancy typically around ∼20-30%, thus much lower than what would be expected for classical G-protein coupled receptor (GPCR) antagonists in other therapeutic contexts. These findings are also discussed in relation to emerging literature on the potential usefulness of ‘neutral’ vs. ‘classical’ CB1R (inverse agonist) antagonists. The study additionally highlighted the usefulness of the radioligand [11C]SD5024 as a specific tracer for CB1R in the primate brain, though an arterial input function would ideally be required in future studies to further assure accurate quantitative analysis of specific binding.”

http://www.ncbi.nlm.nih.gov/pubmed/25791528

Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs.

“Status epilepticus (SE) is a medical emergency associated with a high rate of mortality if not treated promptly.

Exogenous and endogenous cannabinoids have been shown to possess anticonvulsant properties both in vivo and in vitro.

Here we study the influence of endocannabinoid metabolism on the development of kainic acid-induced SE in guinea pigs.

The present study provides electrophysiologic and behavioral evidences that inhibition of endocannabinoid metabolism plays a protective role against kainic acid-induced SE and may be employed for therapeutic purposes.”

http://www.ncbi.nlm.nih.gov/pubmed/25769371

http://www.thctotalhealthcare.com/category/epilepsy-2/

Role of endogenous cannabinoid system in the gut.

“The plant Cannabis has been used in clinic for centuries, and has been known to be beneficial in a variety of gastrointestinal diseases, such as emesis, diarrhea, inflammatory bowel disease and intestinal pain.

In this text, we’ll review the components of the endogenous cannabinoid system as well as its role in the regulation of gastrointestinal activities, thus providing relative information for further study.

Moreover, modulation of the endogenous cannabinoid system in gastrointestinal tract may provide a useful therapeutic target for gastrointestinal disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23963077

http://www.thctotalhealthcare.com/category/gastrointestinal-disorders/