Medical Marijuana-Opportunities and Challenges

“Over the recent years, public and political opinions have demonstrated increasing support for the legalization of medical marijuana.

To date, 24 states as well as the District of Columbia have legalized cannabis for medical use, 4 states have legalized the recreational use of Marijuana.

Marijuana is derived from the hemp plant Cannabis sativa. Δ-9-tetrahydrocannabinol (THC) is the major psychoactive constituent of cannabis, while cannabidiol (CBD) is the major non-psychoactive constituent. THC is a partial agonist at CB1 and CB2 receptors, while CBD at high levels is an antagonist CB1 and CB2.

CB1 is abundantly expressed in the brain, and CB2 is expressed on immune cells (expression of CB2 on neurons remains controversial). The brain also produces endogenous cannabis-like substances (endocannabinoids) that bind and activate the CB1/CB2 receptors.

There is tremendous interest in harnessing the therapeutic potential of plant-derived and synthetic cannabinoids.

This Editorial provides an overview of diseases that may be treated by cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948749/

Cannabinoid Receptor Found to Help Suppress Habitual Behavior

“A mouse study finds that CB1 protein in orbitofrontal cortex neurons mediates the ability to switch between habitual and active-learning behaviors when needed.

Everyone carries out daily habits and routines. As David Lovinger, Ph.D., chief of the Laboratory for Integrative Neuroscience at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), explained, “If your brain does not habitualize familiar tasks or places, it would be very difficult to focus because you’re constantly processing all these sensory inputs.”

Nonetheless, it’s important that the brain can shift from habit mode to a more active, goal-directed mindset. While an occasional lapse is normal, a chronic inability to exit from habitual behavior is a critical element of both addiction and obsessive-compulsive disorders. A new study carried out by Lovinger and colleagues adds to the understanding of the brain circuits responsible for the habitual/goal-directed shift.

The results, published June 15 in Neuron, also point to a receptor called cannabinoid type 1 (CB1) as a key regulator of this circuitry.

The findings were made possible using a training strategy that enabled mice to push levers for food in both a habitual and goal-directed manner. The mice were placed in enclosures with differing visual decorations; the lever in the first dropped a food reward after it was pressed a certain number of times, while the lever in the second would drop a reward at a random time after the lever had been pressed once.

“In the first scenario, the mouse makes the connection quickly that pressing the lever 20 times, for example, gets it a reward,” Lovinger told Psychiatric News. “In the second enclosure, that contiguity is disrupted. The mouse knows that pressing will eventually lead to reward, but it doesn’t know how many, so it will just start pressing at a periodic rate.”

On alternate testing days, the mice were allowed to eat their treats prior to the testing, and on these days—termed the devalued state because the desire for the reward is lessened—mice pressed the lever far less in the goal-directed enclosure, but still roughly the same amount in the random-time enclosure—much like a habit.

The researchers then tried these tests out on mice in which the neurons that travel between the orbitofrontal cortex (OFC) and dorsal striatum (DS, which links decision making and reward behaviors) were blocked and observed that the mice kept pressing a lot in both enclosures, suggesting an inability to switch out of habit mode.

“Normally, on devalued days the urge to default to the habit of pressing the lever repeatedly gets suppressed in some way because the brain is providing information that the food isn’t as valuable,” Lovinger said.

With the OFC-DS connection identified, the next question was what part of these neurons was responsible for suppressing habits? Some previous work by Lovinger’s colleague and study coauthor Rui Costa, Ph.D., an investigator at the Champalimaud Institute for the Unknown in Lisbon, Portugal, pointed to CB1 as a potential candidate; the CB1 receptor interacts with endocannabinoids, natural messenger molecules in the body that are strikingly similar to THC, the active compound in marijuana.

When mice lacking the CB1 receptor in their OFC neurons were trained, they reduced their lever pressing in both enclosures on devalued days, reflective of a state in which the mice always used goal-directed behaviors because they could not form habits.

Having found CB1 as the receptor that Helps suppress habits, Lovinger said the next step would be to find the agent in the OFC-DS neural circuit that strengthens habits—and that should provide major clues about how drugs of abuse like alcohol and marijuana disrupt the normal process of habituation.

While the NIAAA is more focused on the addiction side, Lovinger thinks the current knowledge gained on weakened habits could be valuable in neuropsychiatry as well.

“It may be a bit of a stretch, but ADHD could be mediated in part by reduced habit-forming potential,” he said. “If someone is trying to pay attention to all potential outcomes in every decision, it could explain the lack of focus displayed by people with ADHD.””

http://psychnews.psychiatryonline.org/doi/full/10.1176/appi.pn.2016.7b25

Study reveals central role of endocannabinoids in habit formation

National Institutes of Health (NIH) - Turning Discovery into Health

“Daily activities involve frequent transitions between habitual behaviors, such as driving home, and goal-directed behaviors, such as driving to a new destination on unfamiliar roads. An inability to shift between habitual and non-habitual behaviors has been implicated in obsessive-compulsive disorder (OCD), addiction, and other disorders characterized by impaired decision-making.

In a new study conducted with mice, scientists report that endocannabinoids, natural messengers in the body that are chemically similar to the active compound in marijuana, play an important role in how the brain controls this fundamental process.

The National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health, funded the study.

“The new findings point to a previously unknown mechanism in the brain that regulates the transition between goal-directed and habitual behaviors,” said George F. Koob, Ph.D., NIAAA director. “As we learn more about this mechanism, it could reveal how the brain forms habits and, more specifically, how both endocannabinoids and cannabinoid abuse can influence habitual behavior pathophysiology.” A report of the findings is now online in the journal Neuron.

Previous work in NIAAA’s Laboratory for Integrative Neuroscience suggested that reduced activity in the brain’s orbitofrontal cortex (OFC) underlies habit formation. Endocannabinoids are known to generally reduce the activity of neurons. In the current study, the authors, hypothesized that endocannabinoids in the OFC could be playing a key role in habit formation. The researchers used a newly developed procedure that allowed them to probe the brain mechanisms involved when a mouse shifts from goal-directed to habitual actions. By chemically inhibiting the activity of neurons in the OFC, they disrupted goal-directed behaviors and the mice relied on habitual actions instead. David Lovinger, Ph.D., chief of the NIAAA Laboratory for Integrative Neuroscience, Rui Costa, Ph.D., D.V.M., from the Champalimaud Centre for the Unknown in Lisbon, Portugal, and first author Christina Gremel, Ph.D. from NIAAA and the University of California, San Diego led the research team.

“Mice were trained to receive a food reward in two different ways,” said Dr. Lovinger. “One way required the animal to respond out of habit, while the second way demanded it to perform behaviors that were goal-directed.”

When Dr. Lovinger and his colleagues selectively deleted a particular endocannabinoid receptor, called cannabinoid type 1 (CB1), from OFC neurons, they found that mice that lacked these receptors did not form habits, but used goal-directed responses to receive the food reward. Animals with intact CB1 receptors preferentially used habitual responses to obtain the food reward. The authors say the new study points to a molecular mechanism through which endocannabinoids promote the formation of habits by reducing the flow of information in the OFC.

“Endocannabinoids appear to act as a brake in the OFC, allowing for habit formation,” said Dr. Gremel, an assistant professor of psychology and affiliated with the Neurosciences Graduate program at UCSD. “Our results suggest that alterations in the brain’s endocannabinoid system could be blocking the brain’s capacity to ‘break habits’ as observed in disorders that affect switching between goal-directed and habitual behaviors.”

The authors concluded that their findings demonstrate the existence of parallel brain circuits that mediate goal-directed and habitual behaviors. Drugs of abuse and neuropsychiatric disorders can affect decision-making by changing the balance between habitual and goal-directed actions. In particular, these mechanisms could help explain how cannabis drugs such as marijuana affect memory and decision-making.

The new findings suggest that strategies that target the brain’s endocannabinoid system might restore this balance and alleviate suffering in disorders involving these processes.”

https://www.nih.gov/news-events/news-releases/study-reveals-central-role-endocannabinoids-habit-formation?source=acsh.org

Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

“Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse.

Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction.

Collectively, these findings demonstrate that 1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. 2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP.”

http://www.ncbi.nlm.nih.gov/pubmed/27461790

Cannabinoid Receptor 1 (CNR1) Gene Variant Moderates Neural Index of Cognitive Disruption during Nicotine Withdrawal.

 

“Nicotine withdrawal-related disruption of cognitive control may contribute to the reinforcement of tobacco use.

Identification of gene variants that predict this withdrawal phenotype may lead to tailored pharmacotherapy for smoking cessation.

Variation on the cannabinoid receptor 1 gene (CNR1) has been related to nicotine dependence, and CNR1 antagonists may increase attention and memory functioning.

The current findings suggest potential efficacy of cannabinoid RECEPTOR antagonism as a pharmacotherapy approach for smoking cessation among individuals who exhibit greater nicotine withdrawal-related cognitive disruption.”

http://www.ncbi.nlm.nih.gov/pubmed/27453054

The Cannabinoid Receptor 2 Protects Against Alcoholic Liver Disease Via a Macrophage Autophagy-Dependent Pathway.

“Kupffer cells, the resident macrophages of the liver, play a major role in the pathogenesis of alcoholic liver disease. We have previously demonstrated that CB2 receptor protects against alcoholic liver disease by inhibiting alcohol-induced inflammation and steatosis via the regulation of Kupffer cell activation.

Here, we explored the mechanism underlying these effects and hypothesized that the anti-inflammatory properties of CB2 receptor in Kupffer cells rely on activation of autophagy.

Altogether these results demonstrate that CB2 receptor activation in macrophages protects from alcohol-induced steatosis by inhibiting hepatic inflammation through an autophagy-dependent pathway.”

http://www.ncbi.nlm.nih.gov/pubmed/27346657

Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging With the Novel Radiotracer [11C]CURB.

“One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence.

In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects.

Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/27345297

Dissecting the signaling pathways involved in the crosstalk between mGlu5 and CB1 receptors.

“The metabotropic glutamate (mGlu) receptor 5 and the cannabinoid type 1 (CB1) receptor are G-protein-coupled receptors (GPCR) that are widely expressed in the central nervous system (CNS). mGlu5 receptors, present at the postsynaptic site, are coupled to Gαq/11 proteins and display an excitatory response upon activation, while the CB1 receptor, mainly present at presynaptic terminals, is coupled to the Gi/o protein and triggers an inhibitory response. Recent studies suggest that the glutamatergic and endocannabinoid systems exhibit a functional interaction to modulate several neural processes. In this review we discuss possible mechanisms involved in this crosstalk and its relationship with physiological and pathological conditions, including nociception, addiction and fragil X syndrome.”

http://www.ncbi.nlm.nih.gov/pubmed/27338080

Basolateral amygdala CB1 cannabinoid receptors are involved in cross state-dependent memory retrieval between morphine and ethanol.

“Ethanol and morphine are largely co-abused and affect memory formation.

The present study intended to investigate the involvement of cannabinoid CB1 receptors of the basolateral amygdala (BLA) in cross state-dependent memory retrieval between morphine and ethanol.

Taken together, it can be concluded that morphine and ethanol can induce state-dependent memory retrieval.

In addition, the BLA endocannabinoid system mediates via CB1 receptors the functional interaction of morphine and ethanol state-dependent memory retrieval which may depend on the rewarding effects of the drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/27327764

Exercise as an adjunctive treatment for cannabis use disorder.

“Despite cannabis being the most widely used illicit substance in the United States, individuals diagnosed with cannabis use disorder (CUD) have few well-researched, affordable treatment options available to them.

Although found to be effective for improving treatment outcomes in other drug populations, exercise is an affordable and highly accessible treatment approach that has not been routinely investigated in cannabis users. The aim of this paper is to inform the topic regarding exercise’s potential as an adjunctive treatment for individuals with CUD.

Given that exercise is a potent activator of the eCB system, it is mechanistically plausible that exercise could be an optimal method to supplement cessation efforts by reducing psychophysical withdrawal, managing stress, and attenuating drug cravings.”

http://www.ncbi.nlm.nih.gov/pubmed/27314543

“Exercise activates the endocannabinoid system.”  http://www.ncbi.nlm.nih.gov/pubmed/14625449