Medical cannabis and mental health: A guided systematic review

Image result for sciencedirect

“This review considers the potential influences of the use of cannabis for therapeutic purposes (CTP) on areas of interest to mental health professionals, with foci on adult psychopathology and assessment. We identified 31 articles relating to the use of CTP and mental health, and 29 review articles on cannabis use and mental health that did not focus on use for therapeutic purposes. Results reflect the prominence of mental health conditions among the reasons for CTP use, and the relative dearth of high-quality evidence related to CTP in this context, thereby highlighting the need for further research into the harms and benefits of medical cannabis relative to other therapeutic options. Preliminary evidence suggests that CTP may have potential for the treatment of PTSD, and as a substitute for problematic use of other substances. Extrapolation from reviews of non-therapeutic cannabis use suggests that the use of CTP may be problematic among individuals with psychotic disorders. The clinical implications of CTP use among individuals with mood disorders are unclear. With regard to assessment, evidence suggests that CTP use does not increase risk of harm to self or others. Acute cannabis intoxication and recent CTP use may result in reversible deficits with the potential to influence cognitive assessment, particularly on tests of short-term memory.

Cannabis use does not appear to increase risk of harm to self or others.”

http://www.sciencedirect.com/science/article/pii/S0272735816300939

“Marijuana could help treat drug addiction, mental health, study suggests”  https://www.sciencedaily.com/releases/2016/11/161116102847.htm

“Marijuana may help combat substance abuse, mental health disorders”  http://www.medicalnewstoday.com/articles/314159.php

“Medical cannabis may help treat mental health problems and opioid addiction”  http://www.news-medical.net/news/20161116/Medical-cannabis-may-help-treat-mental-health-problems-and-opioid-addiction.aspx

Crystal Structure of the Human Cannabinoid Receptor CB1.

Image result for cell journal

“Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use.

CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders.

Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study.

The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding.

In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids.

This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.”

https://www.ncbi.nlm.nih.gov/pubmed/27768894

Cannabis as Secondary Drug Is Not Associated With a Greater Risk of Death in Patients With Opiate, Cocaine, or Alcohol Dependence.

Image result for Journal of Addiction Medicine

“To assess the impact of cannabis use as secondary drug on mortality of patients with other major substance use disorders.

Positive urinary cannabis did not confer an increased risk of death in patients with severe opiate, cocaine or alcohol dependence.”

https://www.ncbi.nlm.nih.gov/pubmed/27753720

State Medical Marijuana Laws and the Prevalence of Opioids Detected Among Fatally Injured Drivers.

Image result for Am J Public Health.

“To assess the association between medical marijuana laws (MMLs) and the odds of a positive opioid test, an indicator for prior use.

State-specific estimates indicated a reduction in opioid positivity for most states after implementation of an operational MML,

CONCLUSIONS:

Operational MMLs are associated with reductions in opioid positivity among 21- to 40-year-old fatally injured drivers and may reduce opioid use and overdose.”

http://www.ncbi.nlm.nih.gov/pubmed/27631755

Don’t Worry, Be Happy: Endocannabinoids and Cannabis at the Intersection of Stress and Reward.

Image result for annual review of pharmacology and toxicology

“Cannabis enables and enhances the subjective sense of well-being by stimulating the endocannabinoid system (ECS), which plays a key role in modulating the response to stress, reward, and their interactions.

The recent shift toward legalization of medical or recreational cannabis has renewed interest in investigating the physiological role of the ECS as well as the potential health effects, both adverse and beneficial, of cannabis.

Here we review our current understanding of the ECS and its complex physiological roles.

We discuss the implications of this understanding vis-á-vis the ECS’s modulation of stress and reward and its relevance to mental disorders in which these processes are disrupted (i.e., addiction, depression, posttraumatic stress disorder, schizophrenia), along with the therapeutic potential of strategies to manipulate the ECS for these conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/27618739

Evaluation of Two Commercially Available Cannabidiol Formulations for Use in Electronic Cigarettes.

Image result for Front Pharmacol.

“Since 24 states and the District of Columbia have legalized marijuana in some form, suppliers of legal marijuana have developed Cannabis sativa products for use in electronic cigarettes (e-cigarettes).

Personal battery powered vaporizers, or e-cigarettes, were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. The liquid formulations used in these devices are comprised of an active ingredient such as nicotine mixed with vegetable glycerin (VG) and/or propylene glycol (PG) and flavorings.

A significant active ingredient of C. sativa, cannabidiol (CBD), has been purported to have anti-convulsant, anti-nociceptive, and anti-psychotic properties. These properties have potential medical therapies such as intervention of addictive behaviors, treatments for epilepsy, management of pain for cancer patients, and treatments for schizophrenia.

However, CBD extracted from C. sativa remains a DEA Schedule I drug since it has not been approved by the FDA for medical purposes.

Two commercially available e-cigarette liquid formulations reported to contain 3.3 mg/mL of CBD as the active ingredient were evaluated. These products are not regulated by the FDA in manufacturing or in labeling of the products and were found to contain 6.5 and 7.6 mg/mL of CBD in VG and PG with a variety of flavoring agents. Presently, while labeled as to content, the quality control of manufacturers and the relative safety of these products is uncertain.”

http://www.ncbi.nlm.nih.gov/pubmed/27621706

Medical Marijuana-Opportunities and Challenges

“Over the recent years, public and political opinions have demonstrated increasing support for the legalization of medical marijuana.

To date, 24 states as well as the District of Columbia have legalized cannabis for medical use, 4 states have legalized the recreational use of Marijuana.

Marijuana is derived from the hemp plant Cannabis sativa. Δ-9-tetrahydrocannabinol (THC) is the major psychoactive constituent of cannabis, while cannabidiol (CBD) is the major non-psychoactive constituent. THC is a partial agonist at CB1 and CB2 receptors, while CBD at high levels is an antagonist CB1 and CB2.

CB1 is abundantly expressed in the brain, and CB2 is expressed on immune cells (expression of CB2 on neurons remains controversial). The brain also produces endogenous cannabis-like substances (endocannabinoids) that bind and activate the CB1/CB2 receptors.

There is tremendous interest in harnessing the therapeutic potential of plant-derived and synthetic cannabinoids.

This Editorial provides an overview of diseases that may be treated by cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948749/

Cannabinoid Receptor Found to Help Suppress Habitual Behavior

“A mouse study finds that CB1 protein in orbitofrontal cortex neurons mediates the ability to switch between habitual and active-learning behaviors when needed.

Everyone carries out daily habits and routines. As David Lovinger, Ph.D., chief of the Laboratory for Integrative Neuroscience at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), explained, “If your brain does not habitualize familiar tasks or places, it would be very difficult to focus because you’re constantly processing all these sensory inputs.”

Nonetheless, it’s important that the brain can shift from habit mode to a more active, goal-directed mindset. While an occasional lapse is normal, a chronic inability to exit from habitual behavior is a critical element of both addiction and obsessive-compulsive disorders. A new study carried out by Lovinger and colleagues adds to the understanding of the brain circuits responsible for the habitual/goal-directed shift.

The results, published June 15 in Neuron, also point to a receptor called cannabinoid type 1 (CB1) as a key regulator of this circuitry.

The findings were made possible using a training strategy that enabled mice to push levers for food in both a habitual and goal-directed manner. The mice were placed in enclosures with differing visual decorations; the lever in the first dropped a food reward after it was pressed a certain number of times, while the lever in the second would drop a reward at a random time after the lever had been pressed once.

“In the first scenario, the mouse makes the connection quickly that pressing the lever 20 times, for example, gets it a reward,” Lovinger told Psychiatric News. “In the second enclosure, that contiguity is disrupted. The mouse knows that pressing will eventually lead to reward, but it doesn’t know how many, so it will just start pressing at a periodic rate.”

On alternate testing days, the mice were allowed to eat their treats prior to the testing, and on these days—termed the devalued state because the desire for the reward is lessened—mice pressed the lever far less in the goal-directed enclosure, but still roughly the same amount in the random-time enclosure—much like a habit.

The researchers then tried these tests out on mice in which the neurons that travel between the orbitofrontal cortex (OFC) and dorsal striatum (DS, which links decision making and reward behaviors) were blocked and observed that the mice kept pressing a lot in both enclosures, suggesting an inability to switch out of habit mode.

“Normally, on devalued days the urge to default to the habit of pressing the lever repeatedly gets suppressed in some way because the brain is providing information that the food isn’t as valuable,” Lovinger said.

With the OFC-DS connection identified, the next question was what part of these neurons was responsible for suppressing habits? Some previous work by Lovinger’s colleague and study coauthor Rui Costa, Ph.D., an investigator at the Champalimaud Institute for the Unknown in Lisbon, Portugal, pointed to CB1 as a potential candidate; the CB1 receptor interacts with endocannabinoids, natural messenger molecules in the body that are strikingly similar to THC, the active compound in marijuana.

When mice lacking the CB1 receptor in their OFC neurons were trained, they reduced their lever pressing in both enclosures on devalued days, reflective of a state in which the mice always used goal-directed behaviors because they could not form habits.

Having found CB1 as the receptor that Helps suppress habits, Lovinger said the next step would be to find the agent in the OFC-DS neural circuit that strengthens habits—and that should provide major clues about how drugs of abuse like alcohol and marijuana disrupt the normal process of habituation.

While the NIAAA is more focused on the addiction side, Lovinger thinks the current knowledge gained on weakened habits could be valuable in neuropsychiatry as well.

“It may be a bit of a stretch, but ADHD could be mediated in part by reduced habit-forming potential,” he said. “If someone is trying to pay attention to all potential outcomes in every decision, it could explain the lack of focus displayed by people with ADHD.””

http://psychnews.psychiatryonline.org/doi/full/10.1176/appi.pn.2016.7b25

Study reveals central role of endocannabinoids in habit formation

National Institutes of Health (NIH) - Turning Discovery into Health

“Daily activities involve frequent transitions between habitual behaviors, such as driving home, and goal-directed behaviors, such as driving to a new destination on unfamiliar roads. An inability to shift between habitual and non-habitual behaviors has been implicated in obsessive-compulsive disorder (OCD), addiction, and other disorders characterized by impaired decision-making.

In a new study conducted with mice, scientists report that endocannabinoids, natural messengers in the body that are chemically similar to the active compound in marijuana, play an important role in how the brain controls this fundamental process.

The National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health, funded the study.

“The new findings point to a previously unknown mechanism in the brain that regulates the transition between goal-directed and habitual behaviors,” said George F. Koob, Ph.D., NIAAA director. “As we learn more about this mechanism, it could reveal how the brain forms habits and, more specifically, how both endocannabinoids and cannabinoid abuse can influence habitual behavior pathophysiology.” A report of the findings is now online in the journal Neuron.

Previous work in NIAAA’s Laboratory for Integrative Neuroscience suggested that reduced activity in the brain’s orbitofrontal cortex (OFC) underlies habit formation. Endocannabinoids are known to generally reduce the activity of neurons. In the current study, the authors, hypothesized that endocannabinoids in the OFC could be playing a key role in habit formation. The researchers used a newly developed procedure that allowed them to probe the brain mechanisms involved when a mouse shifts from goal-directed to habitual actions. By chemically inhibiting the activity of neurons in the OFC, they disrupted goal-directed behaviors and the mice relied on habitual actions instead. David Lovinger, Ph.D., chief of the NIAAA Laboratory for Integrative Neuroscience, Rui Costa, Ph.D., D.V.M., from the Champalimaud Centre for the Unknown in Lisbon, Portugal, and first author Christina Gremel, Ph.D. from NIAAA and the University of California, San Diego led the research team.

“Mice were trained to receive a food reward in two different ways,” said Dr. Lovinger. “One way required the animal to respond out of habit, while the second way demanded it to perform behaviors that were goal-directed.”

When Dr. Lovinger and his colleagues selectively deleted a particular endocannabinoid receptor, called cannabinoid type 1 (CB1), from OFC neurons, they found that mice that lacked these receptors did not form habits, but used goal-directed responses to receive the food reward. Animals with intact CB1 receptors preferentially used habitual responses to obtain the food reward. The authors say the new study points to a molecular mechanism through which endocannabinoids promote the formation of habits by reducing the flow of information in the OFC.

“Endocannabinoids appear to act as a brake in the OFC, allowing for habit formation,” said Dr. Gremel, an assistant professor of psychology and affiliated with the Neurosciences Graduate program at UCSD. “Our results suggest that alterations in the brain’s endocannabinoid system could be blocking the brain’s capacity to ‘break habits’ as observed in disorders that affect switching between goal-directed and habitual behaviors.”

The authors concluded that their findings demonstrate the existence of parallel brain circuits that mediate goal-directed and habitual behaviors. Drugs of abuse and neuropsychiatric disorders can affect decision-making by changing the balance between habitual and goal-directed actions. In particular, these mechanisms could help explain how cannabis drugs such as marijuana affect memory and decision-making.

The new findings suggest that strategies that target the brain’s endocannabinoid system might restore this balance and alleviate suffering in disorders involving these processes.”

https://www.nih.gov/news-events/news-releases/study-reveals-central-role-endocannabinoids-habit-formation?source=acsh.org

Blockade of Cannabinoid CB1 receptor attenuates the acquisition of morphine-induced conditioned place preference along with a downregulation of ERK, CREB phosphorylation, and BDNF expression in the nucleus accumbens and hippocampus.

“Cannabinoid CB1 receptor (CB1R) is highly expressed in the mesocorticolimbic system and associated with drug craving and relapse.

Clinical trials suggest that CB1R antagonists may represent new therapies for drug addiction.

Collectively, these findings demonstrate that 1) Repeated morphine with context exposures but not merely the pharmacological effects of morphine increased CB1R expression both in the NAc and hippocampus. 2) CB1R antagonist mediated blockade of ERK-CREB-BDNF signaling activation in the NAc and hippocampus may be an important mechanism underlying the attenuation of morphine CPP.”

http://www.ncbi.nlm.nih.gov/pubmed/27461790