Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

Abstract

“Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165948/

Cannabinoids as Therapeutic Agents for Ablating Neuroinflammatory Disease

“Cannabinoids have been reported to alter the activities of immune cells in vitro and in vivo. These compounds may serve as ideal agents for adjunct treatment of pathological processes that have a neuroinflammatory component. As highly lipophilic molecules, they readily access the brain. Furthermore, they have relatively low toxicity and can be engineered to selectively target cannabinoid receptors. To date, two cannabinoid receptors have been identified, characterized and designated CB1 and CB2. CB1 appears to be constitutively expressed within the CNS while CB2 apparently is induced during inflammation. The inducible nature of CB2 extends to microglia, the resident macrophages of the brain that play a critical role during early stages of inflammation in that compartment. Thus, the cannabinoid-cannabinoid receptor system may prove therapeutically manageable in ablating neuropathogenic disorders such as Alzheimer’s disease, multiple sclerosis, amyotrophic.”

“The marijuana plant, Cannabis sativa, has been consumed therapeutically and recreationally for centuries because of its medicinal and psychotropic attributes. Cannabis contains a complex array of substances, including a group of terpenoid-like, highly lipophilic compounds referred to as cannabinoids. To date, over 60 cannabinoids have been identified from the marijuana plant. Cannabinoids account for the majority of the effects attributed to marijuana that users experience, including euphoria, impaired perception and memory, and mild sedation. While cannabinoids have been used to abolish loss of appetite and to ablate nausea and pain in patients suffering from severe medical disorders, these compounds also possess immune modulatory properties that may prove detrimental to human health. However, accumulating evidence suggests that cannabinoids also may serve as therapeutic agents in neuropathogenic diseases, pathologically hallmarked by elicitation of pro-inflammatory factors by cells of the central nervous system (CNS) and infiltrated peripheral immunocytes. Cannabinoids have the potential to be ideal therapeutic candidates in abolishing inflammatory neuropathies in that they can readily penetrate the blood brain barrier (BBB) to access the brain, have low levels of toxicity, and can specifically exert their effects through cannabinoid receptors. The major cannabinoid receptor type that appears to be targeted in neuroinflammation is cannabinoid receptor 2 (CB2). This receptor has been identified in select cells of the CNS, can be induced on demand during early inflammatory events, and has been shown to attenuate pro-inflammatory cytokine production by microglia, the resident macrophages of the brain that play a central role in many neuropathological processes.”

“In the present review the immune modulatory properties of cannabinoids, including their relation to interaction with cannabinoid receptors as linked to inflammatory neuropathies will be discussed. Included in this review will be an overview of the signal transduction cascades associated with cannabinoid receptors, and the effects of cannabinoid receptor signaling on immune cell function and immunity, and more importantly in the CNS. These discussions will lay the groundwork for the critical element of this review, in which we explore the potential of cannabinoid receptors to serve as therapeutic targets to attenuate the elicitation of pro-inflammatory mediators during neuropathogenic diseases and disorders such as Alzheimer’s disease (AD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), HIV Encephalitis (HIVE), Closed Head Injury (CHI) and Granulomatous Amebic Encephalitis (GAE).”

“It is apparent that therapeutic intervention at an early stage of neuroinflammation is critical. The recognition that microglia express CB2 and that its activation results in ablation of untoward immune responses indicates that this receptor may serve as an ideal therapeutic target. Cannabinoids, as highly lipophilic compounds, can readily penetrate the BBB and access the brain. Furthermore, these compounds can be designed to have low toxicity, minimal psychotropic properties, and to selectively target cells that express the CB2, particularly microglia that serve as endogenous immune cells of the CNS and that play a prominent role in neuroinflammatory processes.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750822/

The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases.

Abstract

“During immuno-mediated attack of the brain, activation of endocannabinoids represents a protective mechanism, aimed at reducing both neurodegenerative and inflammatory damage through various and partially converging mechanisms that involve neuronal and immune cells. Here, we review the main alterations of the endocannabinoid system (ECS) within the central nervous system and in peripheral blood mononuclear cells, in order to discuss the intriguing observation that elements of the peripheral ECS mirror central dysfunctions of endocannabinoid signaling. As a consequence, elements of blood ECS might serve as novel, non-invasive diagnostic tools of several neurological disorders, and targeting the ECS might be useful for therapeutic purposes. In addition, we discuss the appealing working hypothesis that the presence of type-1 cannabinoid receptors on the luminal side, and that of type-2 cannabinoid receptors on the abluminal side of the blood-brain barrier, could drive a unidirectional transport of AEA in the luminal –> abluminal direction (i.e., from blood to brain), thus implying that blood may be a reservoir of AEA for the brain. On this basis, it can be expected that an unbalance of the endogenous tone of AEA in the blood may sustain a similar unbalance of its level within the brain, as demonstrated in Huntington’s disease, Parkinson’s disease, multiple sclerosis, attention-deficit/hyperactivity disorder, schizophrenia, depression and headache.”

http://www.ncbi.nlm.nih.gov/pubmed/18781987

CNS immune surveillance and neuroinflammation: endocannabinoids keep control.

Abstract

“To avoid inflammatory escalation, the central nervous system (CNS) harbors an impressive arsenal of cellular and molecular mechanisms enabling strict control of immune reactions. We here summarize studies suggesting that the old paradigm of the “CNS immune privilege” is overly simplistic. The immune system is allowed to keep the CNS under surveillance, but in a strictly controlled, limited and well-regulated manner. The first line of defense lies outside the brain parenchyma to spare neuronal tissue from the detrimental effects of an inflammatory immune response. As a second line of defense neuroinflammation is unavoidable when pathogens infiltrate the brain or the CNS-immune-homeostasis fails. Inflammation in the CNS is often accompanied by divers brain pathologies. We here review recent strategies to maintain brain homeostasis and modulate neuroinflammation. We focus on Multiple Sclerosis as an example of a complex neuroinflammatory disease. In the past years, several in vitro, in vivo and clinical studies suggested that the endocannabinoid system participates crucially in the immune control and protection of the CNS. We discuss here the endocannabinoid system as a key regulator mechanism of the cross talk between brain and the immune system as well as its potential as a therapeutic target.”

http://www.ncbi.nlm.nih.gov/pubmed/18781977

Nonpsychotropic Cannabinoid Receptors Regulate Microglial Cell Migration

“During neuroinflammation, activated microglial cells migrate toward dying neurons, where they exacerbate local cell damage. The signaling molecules that trigger microglial cell migration are poorly understood. In this paper, we show that pathological overstimulation of neurons by glutamate plus carbachol dramatically increases the production of the endocannabinoid 2-arachidonylglycerol (2-AG) but only slightly increases the production of anandamide and does not affect the production of two putative endocannabinoids, homo-γ-linolenylethanolamide and docosatetraenylethanolamide. We further show that pathological stimulation of microglial cells with ATP also increases the production of 2-AG without affecting the amount of other endocannabinoids. Using a Boyden chamber assay, we provide evidence that 2-AG triggers microglial cell migration. This effect of 2-AG occurs through CB2 and abnormal-cannabidiol-sensitive receptors, with subsequent activation of the extracellular signal-regulated kinase 1/2 signal transduction pathway. It is important to note that cannabinol and cannabidiol, two nonpsychotropic ingredients present in the marijuana plant, prevent the 2-AG-induced cell migration by antagonizing the CB2 and abnormal-cannabidiol-sensitive receptors, respectively. Finally, we show that microglial cells express CB2 receptors at the leading edge of lamellipodia, which is consistent with the involvement of microglial cells in cell migration. Our study identifies a cannabinoid signaling system regulating microglial cell migration. Because this signaling system is likely to be involved in recruiting microglial cells toward dying neurons, we propose that cannabinol and cannabidiol are promising nonpsychotropic therapeutics to prevent the recruitment of these cells at neuroinflammatory lesion sites.”

“Because marijuana produces remarkable beneficial effects, patients with multiple sclerosis, for example, commonly use this plant as a therapeutic agent; however, we still lack essential information on the mechanistic basis of these beneficial effects.”

“The marijuana plant, Cannabis sativa, contains >60 cannabinoid compounds, the best known being Δ9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) (for review, see. Cannabinoid compounds produce their biological effects by acting through at least three cannabinoid receptors (see Table1). These include the cloned cannabinoid CB1 receptors, which are expressed predominately in the CNS, the cloned cannabinoid CB2 receptors, which are expressed predominately by immune cells, and the abnormal-cannabidiol-sensitive receptors (hereafter referred to as abn-CBD receptors). The latter receptors have not been cloned yet, but they have been pinpointed pharmacologically in mice lacking CB1 and CB2 receptors and are also known as anandamide (AEA) receptors.”

“We also show that CBN and CBD, two nonpsychotropic bioactive compounds of marijuana, may antagonize the 2-AG-induced recruitment of microglial cells. This is in agreement with the fact that nabilone, a synthetic analog of THC, produces minimal palliative effects against multiple sclerosis symptoms, whereas smoking cannabis is reported to be beneficial. Therefore, our results suggest that bioactive cannabinoids present in the marijuana plant, such as CBN and CBD, are likely to underlie the increased efficacy of cannabis versus nabilone and therefore hold promise as nonpsychotropic therapeutics to treat neuroinflammation.”

http://www.jneurosci.org/content/23/4/1398.long

Cannabinoids and neuroinflammation

Abstract

“Growing evidence suggests that a major physiological function of the cannabinoid signaling system is to modulate neuroinflammation. This review discusses the anti-inflammatory properties of cannabinoid compounds at molecular, cellular and whole animal levels, first by examining the evidence for anti-inflammatory effects of cannabinoids obtained using in vivo animal models of clinical neuroinflammatory conditions, specifically rodent models of multiple sclerosis, and second by describing the endogenous cannabinoid (endocannabinoid) system components in immune cells. Our aim is to identify immune functions modulated by cannabinoids that could account for their anti-inflammatory effects in these animal models.”

Conclusion

“Cells involved in neuroinflammation express functional cannabinoid receptors and produce and degrade endocannabinoids, suggesting that the endocannabinoid signaling system has a regulatory function in the inflammatory response. Specifically, during neuroinflammation, there is an upregulation of components involved in the cannabinoid signaling system. This suggests that the cannabinoid signaling system participates in the complex development of this disease, which includes a tight orchestration of the various immune cells involved. If this is the case, the cannabinoid signaling machinery may provide ideal targets, since these would be more susceptible to pharmacological effects than those in the same system under healthy conditions. In line with this, cannabinoid compounds alter the functions of these cells, generally by eliciting anti-inflammatory effects. In the case of MS, neuroinflammation is accompanied by autoimmunity and suppressing the immune response may halt or even prevent associated symptoms. As seen in rodent models of MS, cannabinoids ameliorate the progression of and symptoms associated with neuroinflammation. Future experiments into the components that alter endocannabinoid production and degradation, cannabinoid receptor expression, and effects of cannabinoid receptor agonists on immune cells will provide the necessary information to design more effective treatments for neuroinflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574256/

Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats

“The number of activated microglia increase during normal aging. Stimulation of endocannabinoid receptors can reduce the number of activated microglia, particularly in the hippocampus, of young rats infused chronically with lipopolysaccharide (LPS). In the current study we demonstrate that endocannabinoid receptor stimulation by administration of WIN-55212-2 (2 mg/kg/day) can reduce the number of activated microglia in hippocampus of aged rats and attenuate the spatial memory impairment in the water pool task. Our results suggest that the action of WIN-55212-2 does not depend upon a direct effect upon microglia or astrocytes but is dependent upon stimulation of neuronal cannabinoid receptors. Aging significantly reduced cannabinoid type 1 receptor binding but had no effect on cannabinoid receptor protein levels. Stimulation of cannabinoid receptors may provide clinical benefits in age-related diseases that are associated with brain inflammation, such as Alzheimer’s disease.”

“Our results are consistent with the hypothesis that CB receptors on hippocampal neurons modulate glutamatergic and GABAergic function and this leads to reduced microglia activation. This mechanism may underlie the neuroprotective effects of cannabinoids”.

“Importantly, the benefits of cannabinoid receptor stimulation occurred at a dose that did not impair performance in a spatial memory task, indeed the performance of aged rats was significantly improved. This finding is particularly relevant for elderly for patients suffering with diseases associated with brain inflammation, e.g. AD, Parkinson’s disease or multiple sclerosis. The current report is the first to our knowledge to demonstrate the anti-inflammatory actions of cannabinoid therapy in aged animals and strongly advocate an cannabinoid-based therapy for neuroinflammation-related diseases, as well as a potential tool to reduce the impairment in memory processes occurring during normal aging.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586121/

Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders.

Abstract

“The G-protein coupled receptors for Δ⁹-tetrahydrocannabinol, the major psychoactive principle of marijuana, are known as cannabinoid receptors of type 1 (CB₁) and 2 (CB₂) and play important functions in degenerative and inflammatory disorders of the central nervous system. Whilst CB₁ receptors are mostly expressed in neurons, where they regulate neurotransmitter release and synaptic strength, CB₂ receptors are found mostly in glial cells and microglia, which become activated and over-express these receptors during disorders such as Alzheimer’s disease, multiple sclerosis, amyotropic lateral sclerosis, Parkinson’s disease, and Huntington’s chorea. The neuromodulatory actions at CB₁ receptors by endogenous agonists (‘endocannabinoids’), of which anandamide and 2-arachidonoylglycerol are the two most studied representatives, allows them to counteract the neurochemical unbalances arising during these disorders. In contrast, the immunomodulatory effects of these lipophilic mediators at CB₂ receptors regulate the activity and function of glia and microglia. Indeed, the level of expression of CB₁ and CB₂ receptors or of enzymes controlling endocannabinoid levels, and hence the concentrations of endocannabinoids, undergo time- and brain region-specific changes during neurodegenerative and neuroinflammatory disorders, with the initial attempt to counteract excitotoxicity and inflammation. Here we discuss this plasticity of the endocannabinoid system during the aforementioned central nervous system disorders, as well as its dysregulation, both of which have opened the way to the use of either direct and indirect activators or blockers of CB₁ and CB₂ receptors for the treatment of the symptoms or progression of these diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/20632970

[The endogenous cannabinoid system. Therapeutic implications for neurologic and psychiatric disorders].

Abstract

“For about 5,000 years, cannabis has been used as a therapeutic agent. There has been growing interest in the medical use of cannabinoids. This is based on the discovery that cannabinoids act with specific receptors (CB1 and CB2). CB1 receptors are located in specific brain areas (e.g. cerebellum, basal ganglia, and hippocampus) and CB2 receptors on cells of the immune system. Endogenous ligands of the cannabinoid receptors were also discovered (e.g. anandamids). Many physiologic processes are modulated by the two subtypes of cannabinoid receptor: motor functions, memory, appetite, and pain. These innovative neurobiologic/pharmacologic findings could possibly lead to the use of synthetic and natural cannabinoids as therapeutic agents in various areas. Until now, cannabinoids were used as antiemetic agents in chemotherapy-induced emesis and in patients with HIV-wasting syndrome. Evidence suggests that cannabinoids may prove useful in some other diseases, e.g. movement disorders such as Gilles de la Tourette’s syndrome, multiple sclerosis, and pain. These new findings also explain the acute adverse effects following cannabis use.”

http://www.ncbi.nlm.nih.gov/pubmed/15776259