[The endocannabinoid system and bone].

Image result for pubmed

“Recent studies suggest an important role for the skeletal endocannabinoid system in the regulation of bone mass in both physiological and pathological conditions. Both major endocannabinoids (anandamid and 2-arachidonoylglycerol), endocannabinoid receptors – CB1-receptor (CB1R) a CB2-receptor (CB2R) and the endocannabinoid metabolizing enzymes are present or expressed in osteoblasts and osteoclasts. Previous studies identified multiple risk and protective variants of CNR2 gene dealing with the relationship to bone density and/or osteoporosis. Selective CB1R/ CB2R-inverse agonists/antagonists and CB2R-inverse agonists/antagonists are candidates for prevention of bone mass loss and combined antiresorptive and anabolic therapy for osteoporosis.”

https://www.ncbi.nlm.nih.gov/pubmed/27734700

Tissue Engineering of Cartilage; Can Cannabinoids Help?

pharmaceuticals-logo

“This review discusses the role of the cannabinoid system in cartilage tissue and endeavors to establish if targeting the cannabinoid system has potential in mesenchymal stem cell based tissue-engineered cartilage repair strategies.

The review discusses the potential of cannabinoids to protect against the degradation of cartilage in inflamed arthritic joints and the influence of cannabinoids on the chondrocyte precursors, mesenchymal stem cells (MSCs).

We provide experimental evidence to show that activation of the cannabinoid system enhances the survival, migration and chondrogenic differentiation of MSCs, which are three major tenets behind the success of a cell-based tissue-engineered cartilage repair strategy.

These findings highlight the potential for cannabinoids to provide a dual function by acting as anti-inflammatory agents as well as regulators of MSC biology in order to enhance tissue engineering strategies aimed at cartilage repair.”

Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.

“Cannabinoid receptor 2 (CB2), a G protein-coupled receptor (GPCR), is a promising target for the treatment of neuropathic pain, osteoporosis, immune system, cancer, and drug abuse.”

http://www.ncbi.nlm.nih.gov/pubmed/27186994

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

A synergistic interaction of 17-β-estradiol with specific cannabinoid receptor type 2 antagonist/inverse agonist on proliferation activity in primary human osteoblasts.

“The bone remodeling process is influenced by various factors, including estrogens and transmitters of the endocannabinoid system. In osteoblasts, cannabinoid receptors 2 (CB-2) are expressed at a much higher level compared to CB-1 receptors. Previous studies have shown that estrogens could influence CB-2 receptor expression.

In the present study, the possible interactions of a specific CB-2 agonist and a specific CB-2 antagonist/inverse agonist with 17-β-estradiol were investigated in primary human osteoblasts (HOB)…

In conclusion, for the first time a synergistic interaction between 17-β-estradiol and specific CB-2 antagonist/inverse agonist was observed in HOB.

Understanding the molecular pathways of this interaction would be of great importance in developing more efficient and safer drugs for treating or preventing bone diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26171165

Minireview: From the Bench, Toward the Clinic: Therapeutic Opportunities for Cannabinoid Receptor Modulation.

The effects of cannabinoids have been known for centuries and over the past several decades two G-protein coupled receptors, CB1 and CB2, have been identified that are responsible for their activity.

Endogenous lipid-derived cannabinergic agents have been found, biosynthetic and catabolic machinery characterized, and synthetic agents have been designed to modulate these receptors.

Selective agents including agonists, antagonists, inverse agonists and novel allosteric modulators targeting either CB1 or CB2 have been developed to inhibit or augment their basal tone.

As a result, the role these receptors play in human physiology and their potential therapeutic applications in disease states are being elucidated.

The CB1 receptor while ubiquitous is densely expressed in the brain and CB2 is largely found on cells of immune origin.

This minireview highlights the role of CB1 in excitotoxic assaults in the brain and its potential to limit addiction liability.

In addition, it will examine the relationship between receptor activity and stimulation of insulin release from pancreatic β-cells, insulin resistance and feeding behavior leading toward obesity.

The role of CB2 in the neuropathology of amyotrophic lateral sclerosis and in the central manifestations of chronic HIV infection potentially converges at inflammatory cell activation thereby providing an opportunity for intervention.

Lastly, CB2 modulation is discussed in the context of an experimental model of post-menopausal osteoporosis.

Achieving exquisite receptor selectivity and elucidating the mechanisms underlying receptor inhibition and activation will be essential for the development of the next generation of cannabinergic-based therapeutic agents.”

Cannabidiol, a Major Non-Psychotrophic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts.

“Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort.

Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures.

Using Fourier Transform Infrared Spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus.

Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes.”

http://www.ncbi.nlm.nih.gov/pubmed/25801536

Hebrew U. Researchers Find Cannabis Can Strengthen Bones

Arutz Sheva

“Researchers at Hebrew University have found that extracts from the cannabis plant can help strengthen human bones, preventing osteoporosis, according to an Israel21c report.”

http://www.israelnationalnews.com/News/News.aspx/96146#.VPH1lE33-ix

“Peripheral cannabinoid receptor, CB2, regulates bone mass… These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334629/

http://www.thctotalhealthcare.com/category/osteoporosis-2/

Peripheral cannabinoid receptor, CB2, regulates bone mass.

“Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered.

These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling…

These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling.

Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1334629/

http://www.thctotalhealthcare.com/category/osteoporosis-2/

 

Cannabinoid receptor type 1 protects against age-related osteoporosis by regulating osteoblast and adipocyte differentiation in marrow stromal cells.

X-ray generic

“Age-related osteoporosis is characterized by reduced bone formation and accumulation of fat in the bone marrow compartment.

Here, we report that the type 1 cannabinoid receptor (CB1) regulates this process…

The CB1 receptor is therefore unique in that it regulates peak bone mass through an effect on osteoclast activity, but protects against age-related bone loss by regulating adipocyte and osteoblast differentiation of bone marrow stromal cells.”

http://www.ncbi.nlm.nih.gov/pubmed/19656492

“Cannabis may prevent osteoporosis”  http://news.bbc.co.uk/2/hi/uk_news/scotland/edinburgh_and_east/8199007.stm

http://www.thctotalhealthcare.com/category/osteoporosis-2/