Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide.

“Upon activation, brain microglial cells release proinflammatory mediators, such as TNFalpha, which may play an important role in eliciting neuroinflammatory processes causing brain damage.

As cannabinoids have been reported to exert anti-inflammatory and neuroprotective actions in the brain, we here examined the effect of both synthetic and endogenous cannabinoids on TNFalpha release elicited by bacterial endotoxin lypopolysaccharide (LPS) in cultured microglia.

In summary, our data indicate that both synthetic and endogenous cannabinoids inhibit LPS-induced release of TNFalpha from microglial cells.

By showing that such effect does not appear to be mediated by either CB receptor type 1 or 2, we provide evidence suggestive of the existence of yet unidentified cannabinoid receptor(s) in brain microglia.”

http://www.ncbi.nlm.nih.gov/pubmed/12509806

Subjective aggression during alcohol and cannabis intoxication before and after aggression exposure.

“Alcohol and cannabis use have been implicated in aggression.

Alcohol consumption is known to facilitate aggression, whereas a causal link between cannabis and aggression has not been clearly demonstrated.

OBJECTIVES:

This study investigated the acute effects of alcohol and cannabis on subjective aggression in alcohol and cannabis users, respectively, following aggression exposure. Drug-free controls served as a reference. It was hypothesized that aggression exposure would increase subjective aggression in alcohol users during alcohol intoxication, whereas it was expected to decrease subjective aggression in cannabis users during cannabis intoxication.

RESULTS:

Subjective aggression significantly increased following aggression exposure in all groups while being sober. Alcohol intoxication increased subjective aggression whereas cannabis decreased the subjective aggression following aggression exposure. Aggressive responses during the PSAP increased following alcohol and decreased following cannabis relative to placebo. Changes in aggressive feeling or response were not correlated to the neuroendocrine response to treatments.

CONCLUSIONS:

It is concluded that alcohol facilitates feelings of aggression whereas cannabis diminishes aggressive feelings in heavy alcohol and regular cannabis users, respectively.”

http://www.ncbi.nlm.nih.gov/pubmed/27422568

Cannabinoids, inflammation, and fibrosis.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (CT-3, AJA; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

http://www.ncbi.nlm.nih.gov/pubmed/27435265

Protective effect of cannabidiol on hydrogen peroxide‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells.

“Cannabidiol, a major component of marijuana, protects nerves, and exerts antispasmodic, anti-inflammatory and anti‑anxiety effects.

In the current study, the protective effect of cannabidiol was observed to prevent hydrogen peroxide (H2O2)‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells.

Taken together, these results suggest that cannabidiol potentially exerts its protective effect on LDH via the suppression of anti‑apoptosis, anti‑inflammation and anti‑oxidative activities in nucleus pulposus cells.”

http://www.ncbi.nlm.nih.gov/pubmed/27430346

Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling.

“The present study further investigated the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase (FAAH) inhibitor URB597 (URB) on chronic cerebral hypoperfusion (CCH)-induced cognitive impairment in rats.

These findings suggest that WIN and URB are promising agents for therapeutic management of CCH.”

http://www.ncbi.nlm.nih.gov/pubmed/27424778

“Chronic cerebral hypoperfusion (CCH) is one of the causes of vascular dementia (VaD) and is also an etiological factor for Alzheimer’s disease (AD).”  http://journal.frontiersin.org/article/10.3389/fnagi.2014.00010/full

Cannabinoid activation of PPARα; a novel neuroprotective mechanism

Logo of brjpharm

“The cannabinoids are a structurally diverse family of compounds with a large number of different biological targets.

Although CB1 receptor activation evokes neuroprotection in response to cannabinoids, some cannabinoids have been reported to be peroxisome proliferator activated receptor (PPAR) ligands, offering an alternative protective mechanism.

We have, therefore, investigated the ability of a range of cannabinoids to activate PPARα and for N-oleoylethanolamine (OEA), an endogenous cannabinoid-like compound (ECL), to evoke neuroprotection.

These data demonstrate the potential for a range of cannabinoid compounds, of diverse structures, to activate PPARα and suggest that at least some of the neuroprotective properties of these agents could be mediated by nuclear receptor activation.

In summary, the data presented here provide strong evidence that selected cannabinoids are PPARα agonists, and suggest a novel means by which the multiple effects of cannabinoids, in both the CNS and periphery, could be brought about.

In addition to its well-recognized role in lipid metabolism, PPARα activation showed obvious beneficial effects in ischaemic brain damage, which is likely to be connected with its anti-inflammatory action through the NF–κB pathway.

These discoveries not only broaden the potential use of cannabinoids as therapeutic agents, but also support PPARα as a new target for neuroprotective treatment.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190030/

Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism.

Journal of Pharmacology and Experimental Therapeutics

“Serum is required for the survival and growth of most animal cells. In serum-free medium, B lymphoblastoid cells and fibroblasts die after 2 days.

We report that submicromolar concentrations of Delta(9)-tetrahydrocannabinol (THC), Delta(8)-THC, cannabinol, or cannabidiol, but not WIN 55,212-2, prevented serum-deprived cell death. Delta(9)-THC also synergized with platelet-derived growth factor in activating resting NIH 3T3 fibroblasts.

The cannabinoids‘ growth supportive effect did not correlate with their ability to bind to known cannabinoid receptors and showed no stereoselectivity, suggesting a nonreceptor-mediated pathway.

Direct measurement of oxidative stress revealed that cannabinoids prevented serum-deprived cell death by antioxidation.

The antioxidative property of cannabinoids was confirmed by their ability to antagonize oxidative stress and consequent cell death induced by the retinoid anhydroretinol.

Therefore, cannabinoids act as antioxidants to modulate cell survival and growth of B lymphocytes and fibroblasts.”

http://www.ncbi.nlm.nih.gov/pubmed/10869379/

US states that allow medical marijuana see drop in prescriptions for other drugs, study finds

“American states that allow patients access to medical marijuana are seeing fewer prescriptions per doctor for pharmaceutical drugs in several disease categories where marijuana is a potential treatment, a study in Health Affairs has found.

Proportionally, the greatest reduction was in medicines for spasticity. The average physician in a state without medical marijuana prescribed 2068 doses, but in states with access to medical marijuana this fell by 20% to 1645 doses.”

http://www.bmj.com/content/354/bmj.i3942

The Effect of Medical Marijuana on Sickness Absence.

“Utilizing the Current Population Survey, the study identifies that absences due to sickness decline following the legalization of medical marijuana. The effect is stronger in states with ‘lax’ medical marijuana regulations, for full-time workers, and for middle-aged males, which is the group most likely to hold medical marijuana cards.”

http://www.ncbi.nlm.nih.gov/pubmed/27416978

Potential therapeutic targets and the role of technology in developing novel cannabinoid drugs from cyanobacteria.

“Cyanobacteria find several applications in pharmacology as potential candidates for drug design. The need for new compounds that can be used as drugs has always been on the rise in therapeutics. Cyanobacteria have been identified as promising targets of research in the quest for new pharmaceutical compounds as they can produce secondary metabolites with novel chemical structures. Cyanobacteria is now recognized as a vital source of bioactive molecules like Curacin A, Largazole and Apratoxin which have succeeded in reaching Phase II and Phase III into clinical trials.

The discovery of several new clinical cannabinoid drugs in the past decade from diverse marine life should translate into a number of new drugs for cannabinoid in the years to come. Conventional cannabinoid drugs have high toxicity and as a result, they affect the efficacy of chemotherapy and patients’ life very much. The present review focuses on how potential, safe and affordable drugs used for cannabinoid treatment could be developed from cyanobacteria.”

http://www.ncbi.nlm.nih.gov/pubmed/27416557