The interaction between the endocannabinoid system and the renin angiotensin system and its potential implication for COVID-19 infection

 Journal of Cannabis Research | Home“Coronavirus disease 2019 (COVID-19) is spreading fast all around the world with more than fourteen millions of detected infected cases and more than 600.000 deaths by 20th July 2020. While scientist are working to find a vaccine, current epidemiological data shows that the most common comorbidities for patients with the worst prognosis, hypertension and diabetes, are often treated with angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs).

Body: Both ACE inhibitors and ARBs induce overexpression of the angiotensin converting enzyme 2 (ACE-2) receptor, which has been identified as the main receptor used by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter into the alveolar cells of the lungs. While cannabinoids are known to reduce hypertension, the studies testing the hypotensive effects of cannabinoids never addressed their effects on ACE-2 receptors. However, some studies have linked the endocannabinoid system (ECS) with the renin angiotensin system (RAS), including a cross-modulation between the cannabinoid receptor 1 (CB1) and angiotensin II levels.

Conclusion: Since there are around 192 million people using cannabis worldwide, we believe that the mechanism underlying the hypotensive properties of cannabinoids should be urgently studied to understand if they can also lead to ACE-2 overexpression as other antihypertensive drugs do.”

https://pubmed.ncbi.nlm.nih.gov/32835160/

https://jcannabisresearch.biomedcentral.com/articles/10.1186/s42238-020-00030-4

Structural and Functional Insights into Cannabinoid Receptors

 Trends in Pharmacological Sciences (@TrendsinPharma) | Twitter“Cannabinoid receptors type 1 (CB1) and 2 (CB2) are widely expressed in the human body, and are attractive drug targets in the prevention and management of central nervous system (CNS) and immune system dysfunction, respectively. Recent breakthroughs in the structural elucidation of cannabinoid receptors and their signaling complexes with G proteins, provide the important molecular basis of ligand-receptor interactions, activation and signaling mechanism, which will facilitate the next-generation drug design and the precise modulation of the endocannabinoid system. Here, we provide an overview on the structural features of cannabinoid receptors in different functional states and the diverse ligand binding modes. The major challenges and new strategies for future therapeutic applications targeting the endocannabinoid system (ECS) are also discussed.”

https://pubmed.ncbi.nlm.nih.gov/32739033/

“Cannabinoid receptors as key components of the endocannabinoid system are involved in regulating a variety of physiological and pathological activities, and their ligands are regarded as potential drug candidates for the treatment of many diseases.”

https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(20)30146-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614720301462%3Fshowall%3Dtrue

Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products

ijms-logo “Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used.

Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors.

From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.”

https://pubmed.ncbi.nlm.nih.gov/32709050/

https://www.mdpi.com/1422-0067/21/14/5064

Flavonoid and cannabinoid impact on the ocular surface

 Media Kit - Current Opinion in Allergy and Clinical Immunology | Lippincott  Audience Solutions | Wolters Kluwer“Purpose of review: To evaluate the impact of flavonoids and cannabinoids as anti-inflammatory and antiallergic treatments on the anterior surface of the eye.

Recent findings: Allergic conjunctivitis and dry eye syndrome are common ocular surface diseases that have been treated with traditional pharmacological measures, e.g. corticosteroids, antihistamines. Given the side-effect profiles of these medications and the growing interest in complementary treatment modalities as part of integrative medical interventions, well known flavonoids, such as quercetin and catechin, are under investigation for topical and systemic application methods for relief. As flavonoid derivatives, pycnogenol and epigallocatechin gallate have alleviated dry eye symptoms, including lacrimal gland inflammation, tear secretion, and the stability of the tear film. Research on ocular cannabinoid receptors and response to synthetic cannabinoids are also being considered for therapy of anterior ocular disorders. The expansion of herbal formulations provides a framework for future treatment regimens for ocular surface disorders.

Summary: Flavonoids and cannabinoids show promise as potential complementary treatment for allergic diseases because of their anti-inflammatory and antiallergic properties. Several studies implementing ocular and systemic application of these compounds show potential in becoming adjuvant treatment strategies for improving quality of life while also managing ocular surface disease processes.”

https://pubmed.ncbi.nlm.nih.gov/32796166/

https://journals.lww.com/co-allergy/Abstract/2020/10000/Flavonoid_and_cannabinoid_impact_on_the_ocular.11.aspx

Substance use disorders and risk of severe maternal morbidity in the United States

Drug and Alcohol Dependence “The contribution of substance use disorders to the burden of severe maternal morbidity in the United States is poorly understood. The objective was to estimate the independent association between substance use disorders during pregnancy and risk of severe maternal morbidity.

Results: Pregnant women with an opioid use disorder had an increased risk of severe maternal morbidity compared with women without an opioid use disorder (18-34 years: aOR: 1.51; 95 % CI: 1.41,1.61, >34 years: aOR: 1.17; 95 % CI: 1.00,1.38). Compared with their counterparts without stimulant use disorders, pregnant women with a simulant use disorder (amphetamines, cocaine) had an increased risk of severe maternal morbidity (18-34 years: aOR: 1.92; 95 % CI: 1.80,2.0, >34 years: aOR: 1.85; 95 % CI: 1.66,2.06). Cannabis use disorders were not associated with an increased risk of severe maternal morbidity.

Conclusion: Substance use disorders during pregnancy, particularly opioids, amphetamines, and cocaine use disorders, may contribute to severe maternal morbidity in the United States.”

https://pubmed.ncbi.nlm.nih.gov/32846369/

“Cannabis use disorder was not associated with increased risk of severe maternal morbidity.”

https://www.sciencedirect.com/science/article/abs/pii/S0376871620304014?via%3Dihub

Opioids/cannabinoids as a potential therapeutic approach in COVID-19 patients

Publication Cover“So far, no vaccine has been successfully developed and there is no effective treatment of COVID-19.

Since intensive inflammation leads to disease-induced morbidity and mortality, inhibition of the hyperinflammatory response is a definitive drug therapy objective.

Certainly, there is an urgent need for a substance that can potentially counter the effects of the virus and alleviate the symptoms and severity of the disease.

Could opioids/cannabinoids be an effective treatment for COVID-19?

Since opioids/cannabinoids receptors-based drugs can modulate immune cell migration and cytokine/chemokine secretion, they represent a promising pharmacological platform for developing anti-inflammatory therapeutics.

Therefore in the absence of effective treatments to decrease the damage associated with COVID-19 especially in those admitted to the ICU and suffer from exaggerated inflammatory response, opioids/cannabinoids receptor agonists might potentially open up an effective therapeutic approach in COVID-19 infection.

It is interesting to remember that physicians in the late 19th century used anodynes of opium tincture as a treatment of ‘bronchitis’ and other ailments in infants and children, as case reports and experience ‘demonstrated the efficacy’ of the concoction in controlling coughing and facilitating breathing.

Also, today some products of cannabinoids are used to modulate an inflammatory response. This permits us to rediscover the past and utilize the present, with hopes of finding the missing links in the pathophysiology of COVID-19, and raises the issue of opioids/cannabinoids utilization in the context of COVID-19.

It is suggested that clinical trials could be conducted on opioids/cannabinoids products with immunomodulatory activity. We hope that, with great efforts, scientific support, and sharing of information, the overcoming of COVID-19 will come soon.”

https://www.tandfonline.com/doi/full/10.1080/17476348.2020.1787836

Hydroxycinnamic acid derivatives isolated from hempseed and their effects on central nervous system enzymes

 Publication Cover“New neuroprotective treatments of natural origin are being investigated. Both, plant extracts and isolated compounds have shown bioactive effects.

Hempseed is known for its composition of fatty acids, proteins, fibre, vitamins, as well as a large number of phytochemical compounds. After a defatting process of the seeds, hydroxycinnamic acids and its amine derivatives are the majoritarian compounds in an ethyl acetate fraction (EAF).

In the present study, we investigated in vitro effect on neuronal enzymes: MAO-A, MAO-B, tyrosinase and acetylcholinesterase. Besides, the effect of EAF on striatal biogenic amines in mice was evaluated. Both, EAF and isolated compounds (N-trans-caffeoyltyramine and N-trans-coumaroyltyramine), showed inhibitory action on MAO-A, MAO-B and tyrosinase. Furthermore, an increasing of biogenic amines was observed in the corpus striatum of the mice, after administration of EAF.

These findings show that EAF and the hydroxycinnamic acid derivatives may represent a potential treatment in degenerative neuronal diseases.”

https://pubmed.ncbi.nlm.nih.gov/32664762/

https://www.tandfonline.com/doi/abs/10.1080/09637486.2020.1793305?journalCode=iijf20

The endocannabinoid system

Essays in Biochemistry “Thirty years ago, the discovery of a cannabinoid (CB) receptor that interacts with the psychoactive compound in Cannabis led to the identification of anandamide, an endogenous receptor ligand or endocannabinoid. Research on endocannabinoids has since exploded, and additional receptors along with their lipid mediators and signaling pathways continue to be revealed. Specifically, in humans, the release of endocannabinoids from membrane lipids occurs on demand and the signaling process is rapidly attenuated by the breakdown of the ligand suggesting a tight regulation of the endocannabinoid system (ECS). Additionally, the varying distribution of CB receptors between the central nervous system and other tissues allows for the ECS to participate in a wide range of cognitive and physiological processes. Select plant-derived ‘phyto’cannabinoids such as Δ-9-tetrahydrocannabinol (Δ9-THC) bind to the CB receptors and trigger the ECS, and in the case of Δ9-THC, while it has therapeutic value, can also produce detrimental effects. Current research is aimed at the identification of additional phytocannabinoids with minimal psychotropic effects with potential for therapeutic development. Although decades of research on the ECS and its components have expanded our understanding of the mechanisms and implications of endocannabinoid signaling in mammals, it continues to evolve. Here, we provide a brief overview of the ECS and its overlap with other related lipid-mediated signaling pathways.”

https://pubmed.ncbi.nlm.nih.gov/32648908/

“Therapeutic intervention in the dysregulation of the ECS will no doubt involve new phytocannabinoids and various synthetic CBs with which to control an increasing list of ECS- related pathologies.”

https://portlandpress.com/essaysbiochem/article/doi/10.1042/EBC20190086/225762/The-endocannabinoid-system

Anandamide and 2-AG are the principal endogenous ligands that define the classical endocannabinoid signaling system (ECS).

Cannabidiol induces osteoblast differentiation via angiopoietin1 and p38 MAPK

Publication cover image“In this study, we report the potential of cannabidiol, one of the major cannabis constituents, for enhancing osteoblastic differentiation in U2OS and MG-63 cells.

Cannabidiol increased the expression of Angiopoietin1 and the enzyme activity of alkaline phosphatase in U2OS and MG-63. Invasion and migration assay results indicated that the cell mobility was activated by cannabidiol in U2OS and MG-63. Western blotting analysis showed that the expression of tight junction related proteins such as Claudin1, Claudin4, Occuludin1, and ZO1 was increased by cannabidiol in U2OS and MG-63.

Alizarin Red S staining analysis showed that calcium deposition and mineralization was enhanced by cannabidiol in U2OS and MG-63. Western blotting analysis indicated that the expression of osteoblast differentiation related proteins such as distal-less homeobox 5, bone sialoprotein, osteocalcin, type I collagen, Runt-related transcription factor 2 (RUNX2), osterix (OSX), and alkaline phosphatase was time dependently upregulated by cannabidiol in U2OS and MG-63. Mechanistically, cannabidiol-regulated osteoblastic differentiation in U2OS and MG-63 by strengthen the protein-protein interaction among RUNX2, OSX, or the phosphorylated p38 mitogen-activated protein kinase (MAPK).

In conclusion, cannabidiol increased Angiopoietin1 expression and p38 MAPK activation for osteoblastic differentiation in U2OS and MG-63 suggesting that cannabidiol might provide a novel therapeutic option for the bone regeneration.”

https://pubmed.ncbi.nlm.nih.gov/32656944/

https://onlinelibrary.wiley.com/doi/abs/10.1002/tox.22996

The Antimicrobial Activity of Cannabinoids

antibiotics-logo“A post-antibiotic world is fast becoming a reality, given the rapid emergence of pathogens that are resistant to current drugs. Therefore, there is an urgent need to discover new classes of potent antimicrobial agents with novel modes of action.

Cannabis sativa is an herbaceous plant that has been used for millennia for medicinal and recreational purposes. Its bioactivity is largely due to a class of compounds known as cannabinoids.

Recently, these natural products and their analogs have been screened for their antimicrobial properties, in the quest to discover new anti-infective agents. This paper seeks to review the research to date on cannabinoids in this context, including an analysis of structure-activity relationships. It is hoped that it will stimulate further interest in this important issue.”

https://pubmed.ncbi.nlm.nih.gov/32668669/

https://www.mdpi.com/2079-6382/9/7/406