The successful use of dronabinol for failure to thrive secondary to intestinal dysmotility.

“Symptoms of severe intestinal dysmotility decrease patients’ quality of life and may prevent them from sustaining adequate oral intake. Dronabinol is a synthetic cannabinoid that is labeled for use in AIDS-related anorexia and chemotherapy-associated nausea and vomiting that has additional efficacy in patients with other etiologies of nausea, vomiting, and anorexia.

PRESENTATION OF CASE:

We present a 58-year-old female with a history of nausea, vomiting, abdominal pain, and inability to maintain oral intake after multiple laparotomies for ectopic pregnancy, recurrent caecal volvulus, and cholecystitis. After eight years of unsuccessful trials of medicines, dietary modifications, and a partial colectomy, she began a trial of dronabinol, which caused almost complete remission of her symptoms. When this medication was discontinued by her payer, she was unable to maintain oral intake and therefore, was admitted to the hospital for fluid resuscitation and resumption of dronabinol.

DISCUSSION:

The use of dronabinol in this patient with severe intestinal dysmotility allowed her to maintain her nutritional status orally and obviated the need for enteral or parenteral feeding. Unfortunately, it was not covered by her insurance company for this indication.

CONCLUSION:

Dronabinol has the potential to improve quality of life for patients beyond those undergoing chemotherapy or suffering from AIDS. Lack of access to this medicine for patients with intestinal dysmotility after all other modalities have been tried can lead to morbid and expensive complications, such as inpatient admission and surgery for enteral access.”

http://www.ncbi.nlm.nih.gov/pubmed/25974259

“Our experience with this demonstrates that dronabinol can be an effective and well-tolerated treatment option for nausea, vomiting, and abdominal pain secondary to intestinal dysmotility where other modalities have failed.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4446691/

AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells.

“Human cutaneous melanoma is an aggressive and chemotherapy-resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study aimed to characterize the in-vitro antimelanoma activity of AM251…

This study provides the first evidence of a proapoptotic effect and G2/M cell cycle arrest of AM251 on A375 cells. This compound may be a potential prototype for the development of promising diarylpyrazole derivatives to be evaluated in human cutaneous melanoma.”

http://www.ncbi.nlm.nih.gov/pubmed/25974027

http://www.thctotalhealthcare.com/category/melanoma/

Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target.

Figure 2

“Glioblastoma (GBM) is the most common form of primary adult brain tumors…

It is, therefore, essential to discover master regulators that control GBM invasiveness and target them therapeutically.

We demonstrate here that the transcriptional regulator Id-1 plays a critical role in modulating the invasiveness of GBM cell lines and primary GBM cells.

Furthermore, we show that a non-toxic compound, cannabidiol, significantly down-regulates Id-1 gene expression and associated glioma cell invasiveness…

Our results suggest that Id-1 regulates multiple tumor-promoting pathways in GBM, and that drugs targeting Id-1 represent a novel and promising strategy for improving the therapy and outcome of GBM patients.

We previously showed a strong correlation between Id-1 expression and the invasive and metastatic behavior of breast cancer cells.”

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells… CBD represents the first nontoxic exogenous agent that can significantly decrease Id-1 expression in metastatic breast cancer cells…  Moreover, reducing Id-1 expression with cannabinoids could also provide a therapeutic strategy for the treatment of additional aggressive cancers because Id-1 expression was found to be up-regulated during the progression of almost all types…”  http://mct.aacrjournals.org/content/6/11/2921.long

“In this report, we show that Id-1 is a key regulator of brain tumor cell invasiveness and neurosphere growth, and that Id-1 expression is specifically up-regulated in tissues from patients with high-grade gliomas. Importantly, we demonstrate that targeting Id-1 expression using either genetic approaches or the non-toxic cannabinoid, cannabidiol (CBD), leads to a significant reduction in the invasion of both GBM cell lines and patient-derived primary GBM cultures. CBD also significantly inhibits GBM dispersal ex vivo, and reduces tumor growth and Id-1 expression in vivo.

Consistent with the breast cancer study, we found that the non-psychoactive cannabinoid CBD significantly down-regulated Id-1 expression in serum-derived and primary GBM cells. As expected, we observed robust inhibition of glioma cell invasiveness.

In conclusion, our results establish Id-1 as a key regulator of both invasion and stemness in GBM cells and demonstrate that the non-toxic cannabinoid compound CBD down-regulates Id-1 expression and tumor aggressiveness in culture and in vivo.

The data also shed light on some of the key pathways that control GBM cell dispersal and progression. A greater understanding of these pathways may lead to more effective therapies for cancer patients including the additional refinement of cannabinoid analogs targeting Id-1.

We expect our efforts to ultimately translate to the development of future clinical trials with nontoxic compounds that target the expression of Id-1, a master regulator of GBM aggressiveness.

With its lack of systemic toxicity and psychoactivity, CBD is an ideal candidate agent in this regard and may prove useful in combination with front-line agents for the treatment of patients with aggressive and high-grade GBM tumors.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594064/

“McAllister Lab… Cannabidiol inhibits tumor (glioblastoma) progression in mouse models of brain cancer. Mice bearing human brain tumors derived from glioblastoma were treated with the naturally occurring cannabinoid, cannabidiol (CBD).”  http://www.cpmcri-currents.org/our-people/discovery-investigators/mcallister-lab

“New Study Finds Cannabis Compound Could Have Even Greater Reach in Inhibiting Aggressive Cancer than Previously Thought. Researchers at California Pacific Medical Center Research Institute (CPMCRI, a Sutter Health affiliate) have found that a compound in cannabis previously shown to decrease metastatic breast cancer now shows promise in stopping aggressive brain cancer as well. The findings are particularly important given the safety of the cannabis compound and the fact that patients with advanced brain cancer have few options for treatment.”  http://www.cpmc.org/about/press/news2012/cannabis-brain.html

http://www.thctotalhealthcare.com/category/brain-cancer/

Glioblastoma progression in mouse models of brain cancer, after treatment with CBD

Downstream effects of endocannabinoid on blood cells: implications for health and disease.

“Endocannabinoids (eCBs), among which N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are the most biologically active members, are polyunsaturated lipids able to bind cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Depending on the target engaged, these bioactive mediators can regulate different signalling pathways, at both central and peripheral levels.

The biological action of eCBs is tightly controlled by a plethora of metabolic enzymes which, together with the molecular targets of these substances, form the so-called “endocannabinoid system”.

The ability of eCBs to control manifold peripheral functions has received a great deal of attention, especially in the light of their widespread distribution in the body.

In particular, eCBs are important regulators in blood, where they modulate haematopoiesis, platelet aggregation and apoptosis, as well as chemokine release and migration of immunocompetent cells.

Here, we shall review the current knowledge on the pathophysiological roles of eCBs in blood. We shall also discuss the involvement of eCBs in those disorders affecting the haematological system, including cancer and inflammation.

Knowledge gained to date underlines a fundamental role of the eCB system in blood, thus suggesting that it may represent a therapeutic promise for a broad range of diseases involving impaired hematopoietic cell functions.”

http://www.ncbi.nlm.nih.gov/pubmed/25957591

The cannabinoid CB₂ receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain.

European Neuropsychopharmacology Home

“The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressedcannabinoid receptor 2 (CB₂).

…the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.

Cannabis preparations, which have been used since thousands of years for the treatment of pain have recently come again into the focus as potential therapeutics for inflammatory and neuropathic pain conditions. Currently, cannabis extracts and synthetic preparations of the psychoactive cannabis compound Δ9-tetrahydrocannabinol (THC) have been approved in many countries for clinical pain management at doses and formulations that show on only minor central side effects…

A natural selective agonist for CB2 receptors is the plant volatile BCP, which represents a dietary phytocannabinoid. BCP is found in large amounts in the essential oils of many common spices and food plants… Several health effects have been attributed to BCP or medicinal plants containing BCP, including anti-inflammatory, local anesthetic, anti-carcinogenic, anti-fibrotic and anxiolytic-like activity.

In the present study, we investigated the analgesic effects of BCP in formalin-induced inflammation model and in a model of neuropathic pain, which involves the partial ligation of the sciatic nerve… BCP is the first natural CB2 receptor agonist, which could orally reduce inflammatory responses in different animal models of pain.

Thus, it is likely that BCP belongs to a group of common plant natural products with major potential impact on human health.

The oral intake of this dietary cannabinoid with vegetable food could be advantageous in the daily routine clinical practice over synthetic cannabinoid agonists.”

http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/fulltext

http://www.thctotalhealthcare.com/category/neuropathic-pain/

Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain.

Logo of molpain

“Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor.

Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states.

One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoidreceptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state.

The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state.

Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN.

These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.”  http://www.ncbi.nlm.nih.gov/pubmed/20236533

“Tetrahydrocannabinol (THC), a component in marijuana, acts at both CB1 and CB2 receptors, but other forms of cannabinoids such as cannabinol and cannabidiol act predominantly at CB2 receptors. Such CB2 agonists may be potential anti-inflammatory therapies, antagonizing the 2-AG-induced recruitment of microglia and impacting upon development of an inflammatory state. Such properties may permit the cannabinoids to act in the prevention of microglial activation, perhaps limiting the development of neuropathic pain.

The present data confirm the efficacy of cannabinoid agonists, both for the CB1 and CB2 receptor, in modulation of acute thermal and tactile hypersensitivity as features of neuropathic pain. Furthermore, CB1 agonism from the onset of the offending stimulus (diabetes) normally leading to neuropathic pain ameliorated the development of a neuropathic pain state.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845559/

http://www.thctotalhealthcare.com/category/neuropathic-pain/

 

Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via PGE2 and P-selectin Activity.

“Cannabinoids (CB) modulate adult hematopoietic stem and progenitor cell (HSPCs) function, however, impact on the production, expansion or migration of embryonic HSCs is currently uncharacterized.

Here, using chemical and genetic approaches targeting CB-signaling in zebrafish, we show that CB receptor (CNR) 2, but not CNR1, regulates embryonic HSC development…

Together, these data suggest CNR2-signaling optimizes the production, expansion and migration of embryonic HSCs by modulating multiple downstream signaling pathways.”

http://www.ncbi.nlm.nih.gov/pubmed/25931248

Role of CB2 receptors in social and aggressive behavior in male mice.

“This study was designed to examine the role of cannabinoid CB2r in social and aggressive behavior…

Our results suggest that CB2r is implicated in social interaction and aggressive behavior and deserves further consideration as a potential new target for the management of aggression.”

http://www.ncbi.nlm.nih.gov/pubmed/25921034

The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia.

“The opioid and non-opioid types of stress-induced analgesia have been well defined. One of the non-opioid type involve the endocannabinoid system.

We previously reported that the spinal serotonin 7 receptor (5-HT7) blockers inhibit both morphine and cannabinoid-induced analgesia, thus we hypothesized that descending serotonergic pathways-spinal 5-HT7 receptor loop might contribute to stress-induced analgesia…

These results indicate that descending serotonergic pathways and the spinal 5-HT7 receptor loop play a crucial role in mediating both opioid and non-opioid type stress-induced analgesia.”

http://www.ncbi.nlm.nih.gov/pubmed/25917322

Tetrahydrocannabinol (THC) interferes with conditioned retching in Suncus murinus: an animal model of anticipatory nausea and vomiting (ANV).

“Little is understood about effective countermeasures to the expression of anticipatory nausea and vomiting (ANV) in chemotherapy patients.

We present a model of ANV based on the emetic reactions of the Suncus murinus (musk shrew). Following two pairings of a novel distinctive contextual cue with the emetic effects of an injection of lithium chloride, the context acquired the potential to elicit retching in the absence of the toxin.

The expression of this conditioned retching reaction was completely suppressed by pretreatment with THC at a dose that did not suppress general activity.

This provides the first experimental evidence in support of anecdotal reports that THC suppresses ANV.”

http://www.ncbi.nlm.nih.gov/pubmed/11277577

http://www.thctotalhealthcare.com/category/nauseavomiting/