Delta-9-tetrahydrocannabinol and cannabidiol, but not ondansetron, interfere with conditioned retching reactions elicited by a lithium-paired context in Suncus murinus: An animal model of anticipatory nausea and vomiting.

“Chemotherapy patients report not only acute nausea and vomiting during the treatment itself, but also report anticipatory nausea and vomiting upon re-exposure to the cues associated with the treatment.

We present a model of anticipatory nausea based on the emetic reactions of the Suncus murinus (musk shrew). Following three pairings of a novel distinctive contextual cue with the emetic effects of an injection of lithium chloride, the context acquired the potential to elicit conditioned retching in the absence of the toxin.

The expression of this conditioned retching reaction was completely suppressed by pretreatment with each of the principal cannabinoids found in marijuana, Delta(9)-tetrahydrocannabinol or cannabidiol, at a dose that did not suppress general activity.

These results support anecdotal claims that marijuana, but not ondansetron, may suppress the expression of anticipatory nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/16197970

http://www.thctotalhealthcare.com/category/nauseavomiting/

Cannabinoid agonists and antagonists modulate lithium-induced conditioned gaping in rats.

“A series of experiments evaluated the potential of psychoactive cannabinoid agonists, delta-9-THC and HU-210, and non-psychoactive cannabinoids, Cannabidiol (CBD) and its dimethylheptyl homolog (CBD-dmh), to interfere with the establishment and the expression of conditioned gaping in rats.

All agents attenuated both the establishment and the expression of conditioned gaping.

Furthermore, the CB1 antagonist, SR-141716, reversed the suppressive effect of HU-210 on conditioned gaping.

Finally, SR-141716 potentiated lithium-induced conditioned gaping, suggesting that the endogenous cannabinoid system plays a role in the control of nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/14527182

http://www.thctotalhealthcare.com/category/nauseavomiting/

Effects of cannabinoids on lithium-induced conditioned rejection reactions in a rat model of nausea.

“Marijuana has been reported to suppress nausea produced by chemotherapy treatment in human cancer patients.

… there is abundant evidence that cannabinoid agonists attenuate vomiting in emetic species…

The present experiments evaluated the potential of low doses of the cannabinoid agonists, delta-9-tetrahydrocannabinol (THC; 0.5 mg/kg, i.p.), and HU-210 (0.001 mg/kg and 0.01 mg/kg, i.p.), and the CB(1) antagonist SR-141716A in modulating the establishment and the expression of lithium-induced conditioned rejection reactions in rats.

These results indicate that the establishment and the expression of lithium-induced conditioned rejection reactions are suppressed by pretreatment with cannabinoid agents.”

http://www.ncbi.nlm.nih.gov/pubmed/12528012

http://www.thctotalhealthcare.com/category/nauseavomiting/

Cannabidiol, a non-psychoactive component of cannabis and its synthetic dimethylheptyl homolog suppress nausea in an experimental model with rats.

“Rats display conditioned rejection reactions during an oral infusion of a flavor previously paired with an emetic drug; considerable evidence indicates that these rejection reactions reflect nausea.

Here we report that cannabidiol, a major non-psychoactive cannabinoid found in marijuana and its synthetic dimethylheptyl homolog interfere with nausea elicited by lithium chloride and with conditioned nausea elicited by a flavor paired with lithium chloride.

These results suggest that cannabinoids without psychoactive side-effects may have therapeutic value in the treatment of chemotherapy-induced nausea.”

http://www.ncbi.nlm.nih.gov/pubmed/11973447

http://www.thctotalhealthcare.com/category/nauseavomiting/

Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.

“Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa.

It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties.

However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors.

For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.

The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18844286

Intrathecal Injection of JWH-015 Attenuates Bone Cancer Pain Via Time-Dependent Modification of Pro-inflammatory Cytokines Expression and Astrocytes Activity in Spinal Cord.

“Cannabinoid receptor type 2 (CB2) agonists display potential analgesic effects in acute and neuropathic pain.

Overall, our results provided evidences for the persistent participation of inflammation reaction in the progression of bone cancer pain, and demonstrated that JWH-015 reduced the expression of IL-1β, IL-6, IL-18, and TNF-α and inhibited astrocytes activation in a time-dependent manner, thereby displaying an analgesic effect.”

Weeding out bad waves: towards selective cannabinoid circuit control in epilepsy.

“Endocannabinoids are lipid-derived messengers, and both their synthesis and breakdown are under tight spatiotemporal regulation. As retrograde signalling molecules, endocannabinoids are synthesized postsynaptically but activate presynaptic cannabinoid receptor 1 (CB1) receptors to inhibit neurotransmitter release. In turn, CB1-expressing inhibitory and excitatory synapses act as strategically placed control points for activity-dependent regulation of dynamically changing normal and pathological oscillatory network activity. Here, we highlight emerging principles of cannabinoid circuit control and plasticity, and discuss their relevance for epilepsy and related comorbidities. New insights into cannabinoid signalling may facilitate the translation of the recent interest in cannabis-related substances as antiseizure medications to evidence-based treatment strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/25891509

http://www.thctotalhealthcare.com/category/epilepsy-2/

Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection.

“Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure.

Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD.

The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems.

As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD.

Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons.

Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD.

Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.”

http://www.ncbi.nlm.nih.gov/pubmed/25888232

“To conclude, development of safe, effective cannabis-based medicines targeting different mechanisms may have a significant impact in PD therapy.”

Full-text: http://www.molecularneurodegeneration.com/content/10/1/17

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Gonadal hormones do not alter the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol in adult rats.

“The purpose of this study was to determine whether sex differences in the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol (THC) are due to activational effects of gonadal hormones…

These results suggest that greater antinociceptive tolerance in females, which occurred despite females receiving 40% less THC than males, is not due to activational effects of gonadal hormones.”

The cannabis conundrum: Thinking outside the THC box.

“Developing a solid evidence base regarding the health effects of cannabis is imperative given the momentum for legalization and the demand for sound regulatory practices.”

http://www.ncbi.nlm.nih.gov/pubmed/25855064

http://www.thctotalhealthcare.com/