Δ(9)-tetrahydrocannabinol targeting estrogen receptor signaling: the possible mechanism of action coupled with endocrine disruption.

“Δ(9)-Tetrahydrocannabinol (Δ(9)-THC), a biologically active constituent of marijuana, possesses a wide variety of pharmacological and toxicological effects (e.g., analgesia, hypotension, reduction of inflammation, and anti-cancer effects).

Among Δ(9)-THC’s biological activities, its recognized anti-estrogenic activity has been the subject of investigations.

… Δ(9)-THC is used as both a drug of abuse (marijuana) and as a preventive therapeutic to treat pain and nausea in cancer patients undergoing chemotherapy…

…important to investigate the mechanistic basis underlying the anti-estrogenic activity of Δ(9)-THC…

We have recently reported that ERβ, a second type of ER, is involved in the Δ(9)-THC abrogation of E2/ERα-mediated transcriptional activity. Here we discuss the possible mechanism(s) of the Δ(9)-THC-mediated disruption of E2/ERα signaling by presenting our recent findings as well.”

http://www.ncbi.nlm.nih.gov/pubmed/25177025

 

Effect of Marijuana Use on Outcomes in Traumatic Brain Injury.

“Traumatic brain injury (TBI) is associated with significant morbidity (sickness) and mortality (death).

Several studies have demonstrated neuroprotective effects of cannabinoids.

The objective of this study was to establish a relationship between the presence of a positive toxicology screen for tetrahydrocannabinol (THC) and mortality after TBI…

After adjusting for differences between the study cohorts on logistic regression, a THC(+) screen was independently associated with survival after TBI.

A positive THC screen is associated with decreased mortality in adult patients sustaining TBI.”

http://www.ncbi.nlm.nih.gov/pubmed/25264643

http://www.thctotalhealthcare.com/category/brain-trauma/

THC for Huntington’s Disease? CB1 receptors important for more than drug use

Psychology Today: Here to Help

“Smoking marijuana doesn’t have to be a bad thing – Especially if you have HD.

The idea that THC can be used to relieve disease symptoms isn’t a new thing – Glaucoma, HIV, and cancer patients have all benefited from the use of CB1 agonists whether in the form of marijuana leaves or a pharmacologically similar product (like dronabinol).

Nevertheless, the idea of using THC or other CB1 agonists for the treatment of HD is pretty new…

The results of this study suggest that THC and other CB1 compounds may not only be able to improve symptoms in already symptomatic HD patients, but also slow down the progression of such a devestating disease.

Good news all around and a great use of THC as far as I’m concerned (medical use and removal from schedule-1 anyone?!).”

http://www.psychologytoday.com/blog/all-about-addiction/201102/thc-huntingtons-disease-cb1-receptors-important-more-drug-use

http://www.thctotalhealthcare.com/category/huntingtons/

Growing medicine: Small-scale cannabis cultivation for medical purposes in six different countries.

“The production and consumption of cannabis for the treatment of medical conditions is of increasing importance internationally…

Growing cannabis for medical purposes was widespread.

The majority of medical growers reported cultivating cannabis for serious conditions…

There is a wider demand for licit access for medical cannabis than currently available…

many medical growers are using cannabis to treat serious medical conditions without proper medical advice and doctor’s guidance.”

http://www.ncbi.nlm.nih.gov/pubmed/25123694

Cannabidiol exerts sebostatic and antiinflammatory effects on human sebocytes

CBD prevents excessive lipogenesis induced by “pro-acne agents&#x...

“Acne vulgaris is the most common human skin disease, affecting quality of life of millions worldwide…

Investigation of the cutaneous cannabinoid system seems to be a promising choice when searching for novel therapeutic possibilities…

“Collectively, our findings suggest that, due to the combined lipostatic, antiproliferative, and antiinflammatory effects, CBD has potential as a promising therapeutic agent for the treatment of acne vulgaris…

These data, together with our current findings, point to a promising, cost-effective, and, likely, well-tolerated new strategy for treating acne vulgaris, the most common human skin disease…

…given the extensively documented accumulation of phytocannabinoids from smoked marijuana in the pilosebaceous unit (where they become incorporated into the hair shaft), it is very likely that CBD can reach the sebaceous glands as well, can accumulate, and may well reach “therapeutically sufficient” concentrations there.

Moreover, it is very important to note that, besides the systemic application, one should keep in mind the possibility of the topical administration.”

 http://www.jci.org/articles/view/64628

“Schematic overview of the cellular “anti-acne trinity” of CBD and its proposed mechanism of action.”

Schematic overview of the cellular “anti-acne trinity” of ...

 

Anti-Cancer Effects In Active Component Of Marijuana

“Guillermo Velasco and colleagues, at Complutense University, Spain, have provided evidence that suggests that cannabinoids such as the main active component of marijuana (THC) have anticancer effects on human brain cancer cells.

In the study, THC was found to induce the death of various human brain cancer cell lines and primary cultured human brain cancer cells by a process known as autophagy. Consistent with the in vitro data, administration of THC to mice with human tumors decreased tumor growth and induced the tumor cells to undergo autophagy.

As analysis of tumors from two patients with recurrent glioblastoma multiforme (a highly aggressive brain tumor) receiving intracranial THC administration showed signs of autophagy, the authors suggest that cannabinoid administration may provide a new approach to targeting human cancers.”

http://www.medicalnewstoday.com/releases/144770.php

“Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673842/

Marijuana May Grow Neurons in the Brain

Medpage Today

“Advocates for medical marijuana can take heart over the findings of two Canadian research teams.

A synthetic cannabinoid — similar to the compounds found in marijuana, but substantially stronger — causes the growth of new neurons and reduces anxiety and depression, investigators at the University of Saskatchewan here reported.

And researchers at the University of Calgary said they’ve found evidence that the brain contains so-called CB2 cannabinoid receptors, previously seen in immune tissue but thought not to exist in brain tissue. The discovery, they added, could lead to new drugs to treat nausea associated with cancer or AIDS.

Most so-called drugs of abuse — such as alcohol or cocaine — inhibit the growth of new neurons, according to Xia Zhang, M.D., Ph.D., of the University of Saskatchewan.

“Only marijuana promotes neurogenesis,” Dr. Zhang said.”

http://www.medpagetoday.com/Psychiatry/AnxietyStress/1934

“Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects… In summary, since adult hippocampal neurogenesis is suppressed following chronic administration of opiates, alcohol, nicotine, and cocaine, the present study suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic administration.”  http://www.jci.org/articles/view/25509

University Of Saskatchewan Research Suggests Marijuana Analogue Stimulates Brain Cell Growth

ScienceDaily: Your source for the latest research news

“A synthetic substance similar to ones found in marijuana stimulates cell growth in regions of the brain associated with anxiety and depression, pointing the way for new treatments for these diseases, according to University of Saskatchewan medical research published today in The Journal of Clinical Investigation.

Xia Zhang, an associate professor in the U of S neuropsychiatry research unit, led the team that tested the effects of HU-210, a potent synthetic cannabinoid similar to a group of compounds found in marijuana. The synthetic version is about 100 times as powerful as THC, the compound responsible for the high experienced by recreational users.

The team found that rats treated with HU-210 on a regular basis showed neurogenesis – the growth of new brain cells in the hippocampus. This region of the brain is associated with learning and memory, as well as anxiety and depression.

The effect is the opposite of most legal and illicit drugs such as alcohol, nicotine, heroin, and cocaine.

“Most ‘drugs of abuse’ suppress neurogenesis,” Zhang says. “Only marijuana promotes neurogenesis.””

http://www.sciencedaily.com/releases/2005/10/051016083817.htm

“Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects… In summary, since adult hippocampal neurogenesis is suppressed following chronic administration of opiates, alcohol, nicotine, and cocaine, the present study suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic administration.”  http://www.jci.org/articles/view/25509

Clinical endocannabinoid deficiency (CECD) revisited: Can this concept explain the therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions?

Image result for Neuro Endocrinol Lett

“Ethan B. Russo’s paper of December 1, 2003 explored the concept of a clinical endocannabinoid deficiency (CECD) underlying the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome and other functional conditions alleviated by clinical cannabis.

Available literature was reviewed, including searches via the National Library of medicine database and other sources.

A review of the literature indicates that significant progress has been made since Dr. Ethan B. Russo’s landmark paper, just ten years ago (February 2, 2004). Investigation at that time suggested that cannabinoids can block spinal, peripheral and gastrointestional mechanisms that promote pain in headache, fibromyalgia, irritable bowel syndrome and muscle spasm.

CONCLUSION:

Subsequent research has confirmed that underlying endocannabinoid deficiencies indeed play a role in migraine, fibromyalgia, irritable bowel syndrome and a growing list of other medical conditions. Clinical experience is bearing this out. Further research and especially, clinical trials will further demonstrate the usefulness of medical cannabis. As legal barriers fall and scientific bias fades this will become more apparent.”  http://www.ncbi.nlm.nih.gov/pubmed/24977967

“Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.”  http://www.ncbi.nlm.nih.gov/pubmed/15159679

 

Cannabis for inflammatory bowel disease.

“The marijuana plant Cannabis sativa has been used for centuries as a treatment for a variety of ailments. It contains over 60 different cannabinoid compounds.

Studies have revealed that the endocannabinoid system is involved in almost all major immune events. Cannabinoids may, therefore, be beneficial in inflammatory disorders.In murine colitis, cannabinoids decrease histologic and microscopic inflammation.

In humans, cannabis has been used to treat a plethora of gastrointestinal problems, including anorexia, emesis, abdominal pain, diarrhea, and diabetic gastroparesis.

Despite anecdotal reports on medical cannabis in inflammatory bowel disease (IBD), there are few controlled studies. In an observational study in 30 patients with Crohn’s disease (CD), we found that medical cannabis was associated with improvement in disease activity and reduction in the use of other medications.

In a more recent placebo-controlled study in 21 chronic CD patients, we showed a decrease in the CD activity index >100 in 10 of 11 subjects on cannabis compared to 4 of 10 on placebo. Complete remission was achieved in 5 of 11 subjects in the cannabis group and 1 of 10 in the placebo group. Yet, in an additional study, low-dose cannabidiol did not have an effect on CD activity.

In summary, evidence is gathering that manipulating the endocannabinoid system can have beneficial effects in IBD, but further research is required to declare cannabinoids a medicine. We need to establish the specific cannabinoids, as well as appropriate medical conditions, optimal dose, and mode of administration, to maximize the beneficial effects while avoiding any potential harmful effects of cannabinoid use”

http://www.ncbi.nlm.nih.gov/pubmed/24969296