Cannabis Chemicals May Help Fight Prostate Cancer – Fox News

  “Chemicals in cannabis have been found to stop prostate cancer cells from growing in the laboratory, suggesting that cannabis-based medicines could one day help fight the disease, scientists said…”

Read more: http://www.foxnews.com/story/0,2933,540500,00.html#ixzz2Eq24Jmg2

Cannabis Chemicals Stop Prostate Cancer Growth

“ACTIVE chemicals in cannabis have been shown to halt prostate cancer cell growth according to research published in the British Journal of Cancer.

Researchers from the University of Alcala, in Madrid tested the effects of the active chemicals in cannabis called cannabinoids on three human prostate cancer cell lines – called PC-3, DU-a45 and LNCaP.

The prostate cancer cells carry molecular ‘garages’- called receptors- in which cannabinoids can ‘park’.

The scientists showed for the first time that if cannabinoids ‘park’ on a receptor called CB2, the cancer cells stop multipyling.

Dr Walker added: “This research suggest that prostate cancer cells might stop growing if they are treated with chemicals found in cannabis but more work needs to be done to explore the potential of the cannabinoids in treatment.”

To confirm the findings the scientists switched off the CB2 receptors – or ‘closed the garage doors’- on the prostate cells. When cannabinoids were then added to cells without the CB2 receptor, the prostate cancer cells carried on dividing and growing. This suggests that cannabinoids connect with the CB2 receptors on prostate cancer cells to stop cell division and spread.

Professor Ines Diaz-Laviada, study author at the University of Alcala said: “Our research shows that there are areas on prostate cancer cells which can recognise and talk to chemicals found in cannabis called cannabinoids. These chemicals can stop the division and growth of prostate cancer cells and could become a target for new research into potential drugs to treat prostate cancer.”

Read more: http://www.medicalnewstoday.com/releases/161628.php

Increased expressions of cannabinoid receptor-1 and transient receptor potential vanilloid-1 in human prostate carcinoma.

“PURPOSE:

Recently, functional cannabinoid receptor-1 (CB1) and vanilloid receptor-1 (TRPV1) have been described in human prostate and prostate cancer-derived cell lines where the activation of the receptors resulted in inhibition of cellular growth. We, however, lack the description of the expression of these molecules in human prostate cancer (PCC) and in benign prostate hyperplasia (BPH).

RESULTS:

CB1 was identified in epithelial and smooth muscle cells types of the human prostate, whereas TRPV1 was exclusively localized to the mucosal cells. We also found that the expression of CB1 and TRPV1 (both at the protein and mRNA levels) were significantly up-regulated in PCC. However, while the increased expression of TRPV1 showed a proper correlation with increasing PCC tumor grades, such phenomenon was not observed with CB1. In addition, we also measured markedly elevated CB1 levels in BPH tissues whilst the expression of TRPV1 was not altered when compared to healthy control prostate.

CONCLUSIONS:

Our findings strongly argue for that (1) the CB1 and TRPV1 molecules as well as their ligands may indeed possess a promising future role in the treatment of PCC; (2) TRPV1 may also serve as a prognostic factor in PCC; and (3) CB1 may act as a potential target molecule in the therapeutic management of BPH.”

http://www.ncbi.nlm.nih.gov/pubmed/18830626

The role of cannabinoids in prostate cancer: Basic science perspective and potential clinical applications.

“Prostate cancer is a global public health problem, and it is the most common cancer in American men and the second cause for cancer-related death. Experimental evidence shows that prostate tissue possesses cannabinoid receptors and their stimulation results in anti-androgenic effects.”

“Cannabis is a bushy plant with palmate leaves and clusters of small green flowers, and it grows wild in regions of tropical weather and can attain up to 3 m height. The genus Cannabis is complemented by sativa which translates to useful. Cannabis has indeed been used throughout history for a variety of purposes, including the production of fiber for paper and textile manufacture. However, its current popularity lies in its use as a recreational drug with psychoactive properties. The plant contains many chemical compounds that have different pharmacological properties, varying in quantity and quality depending on the strain, culture, and storage conditions.”

“The frequently held view of cannabis and its related products as drugs of abuse have slowed progress in the development of studies designed to take advantage of the properties of cannabinoid derivatives for therapeutic purposes…”

“Delta-9-THC is the substance with the greatest psychoactive potency of the natural cannabinoids and exhibits the greatest analgesic activity. Cannabidiol (CBD), another major constituent of the Cannabis sativa plant, has the same therapeutic effects of THC (analgesic, anti-inflammatory, and others), but with a different pharmacologic profile…”

“It is our conclusion that it would be of interest to conduct clinical trials involving medicinal cannabis or other cannabinoid agonists, comparing clinical markers such as PSA with controls, especially in men with bone metastatic prostate cancer, whom would not only benefit from the possible anti-androgenic effects of cannabinoids but also from analgesia of bone pain, improving quality of life, while reducing narcotic consumption and preventing opioid dependence.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339795/

Towards the use of non-psychoactive cannabinoids for prostate cancer.

“Prostate cancer is the most common malignancy among men of all races and one of the leading causes of cancer death in this population.

The palliative effects of Cannabis sativa (marijuana) and its putative main active ingredient, the Δ9-tetrahydrocannabinol (THC), which include inhibition of nausea and emesis associated with chemo- or radiotherapy, appetite stimulation, pain relief, mood elevation and relief from insomnia in cancer patients, have been well recognized for centuries. In addition to the therapeutic effects outlined above, THC, synthetic cannabinoid ligands and endocannabinoids or endocannabinoid-like substances have all been shown to induce cell death and to inhibit proliferation and/or migration of several murine and/or human cancer cell lines, as well as inhibiting the growth of certain types of tumours or tumour cell xenografts in vivo, including prostate cancer… the results in this paper represent a considerable experimental effort and provide a wealth of important information on how plant-derived, non-psychoactive, cannabinoids can induce apoptosis in prostate carcinoma cells through a variety of mechanisms… The results described in this paper also supplement previous evidence that THC can counteract prostate carcinoma in vitro and in vivo via activation of cannabinoid CB1 and CB2 receptors…” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570005/

Cannabinoid Receptor as a Novel Target for the Treatment of Prostate Cancer

“Because prostate cancer has become the most common cancer diagnosed in men, developing novel targets and mechanism-based agents for its treatment has become a challenging issue. In recent years cannabinoids, the active components of Cannabis sativa Linnaeus (marijuana) and their derivatives have drawn renewed attention because of their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory effects, and tumor regression . Cannabinoids have been shown to induce apoptosis in gliomas, PC-12 pheochromocytoma, CHP 100 neuroblastoma, and hippocampal neurons in vitro, and most interestingly, regression of C6-cell gliomas in vivo. Further interest in cannabinoid research came from the discovery of specific cannabinoid systems and the cloning of specific cannabinoid receptors. These diversified effects of cannabinoids are now known to be mediated by the activation of specific G protein-coupled receptors that are normally bound by a family of endogenous ligands, the endocannabinoids. Two different cannabinoid receptors have been characterized and cloned from mammalian tissues: the “central” CB1 receptor, and the “peripheral” CB2 receptor.”

“In the present study, we show for the first time that expression levels of both cannabinoid receptors, CB1 and CB2, are higher in human prostate cancer cells than in normal cells. Importantly, we also show that WIN-55,212-2 (CB1/CB2 agonist) treatment with androgen-responsive LNCaP cells results in a dose- and time-dependent inhibition of cell growth with a concomitant induction of apoptosis, decrease in protein and mRNA expression of androgen receptor and prostate-specific antigen (PSA), decrease in secreted PSA levels, protein expression of proliferating cell nuclear antigen (PCNA), and vascular endothelial growth factor (VEGF). We suggest that cannabinoid receptor agonists may be useful in the treatment of human prostate cancer.”

“…non–habit-forming cannabinoid receptor agonists could be developed as novel therapeutic agents for the treatment of prostate cancer.”

“We conclude that cannabinoids should be considered as agents for the management of prostate cancer.”

.http://cancerres.aacrjournals.org/content/65/5/1635.long

Cannabinoid Receptor Agonist-induced Apoptosis of Human Prostate Cancer Cells LNCaP Proceeds through Sustained Activation of ERK1/2 Leading to G1 Cell Cycle Arrest

“Prostate cancer (CaP)2 ranks as the most common noncutaneous malignancy and the second leading cause of cancer-related deaths in American males, with similar trends in many Western countries…The major cause of mortality from this disease is metastasis of hormone refractory cancer cells that fail to respond to hormone ablation therapy. Because surgery and current treatment options have proven to be inadequate in treating and controlling CaP, the search for novel targets and mechanism-based agents for prevention and treatment of this disease has become a priority.”

“In recent years, cannabinoids the active components of Cannabis sativa linnaeus (marijuana) and their derivatives are drawing renewed attention because of their diverse pharmacological activities such as cell growth inhibition, anti-inflammatory effects, and tumor regression. Further interest in cannabinoid research came from the discovery of the cannabinoid system and the cloning of specific cannabinoid receptors. Two cannabinoid receptors have been identified: the “central” CB1 and the “peripheral” CB2 receptor. In a recent study, we have shown that WIN 55,212-2 a mixed CB1/CB2 receptor agonist imparts cell growth inhibitory effects in LNCaP cells via an induction of apoptosis. An important observation of this study was that WIN 55,212-2 treatment did not result in apoptosis of the normal prostate epithelial cell at similar doses.”

“Cannabinoids and their derivatives are drawing considerable attention in the treatment of cancer because of their diverse activities such as cell growth inhibition, anti-inflammatory effects, and tumor regression. Accumulated evidence indicates that cannabinoid receptor(s) could be an important target for the treatment of cancer. We have earlier shown that WIN-55,212-2 induced apoptosis of prostate cancer LNCaP cells is mediated through CB1 and CB2 receptors and suggested that these receptors could be an important targets for the treatment of prostate cancer…”

“Hence, we conclude that cannabinoid receptor agonist should be considered as an effective agent for the treatment of prostate cancer. If our hypothesis is supported by in vivo experiments, the long term implications of our study could be to develop nonhabit-forming cannabinoid agonist (s) for the management of prostate cancer.”

http://www.jbc.org/content/281/51/39480.long

Delta9-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism.

Abstract

“The effect of delta9-tetrahydrocannabinol (THC), the major psycho-active component of marijuana, in human prostate cancer cells PC-3 was investigated. THC caused apoptosis in a dose-dependent manner. Morphological and biochemical changes induced by THC in prostate PC-3 cells shared the characteristics of an apoptotic phenomenon. First, loss of plasma membrane asymmetry determined by fluorescent anexin V binding. Second, presence of apoptotic bodies and nuclear fragmentation observed by DNA staining with 4′,6-diamino-2-phenylindole (DAPI). Third, presence of typical ‘ladder-patterned’ DNA fragmentation. Central cannabinoid receptor expression was observed in PC-3 cells by immunofluorescence studies. However, several results indicated that the apoptotic effect was cannabinoid receptor-independent, such as lack of an effect of the potent cannabinoid agonist WIN 55,212-2, inability of cannabinoid antagonist AM 251 to prevent cellular death caused by THC and absence of an effect of pertussis toxin pre-treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/10570948

NBC News Reports that Cannabidiol (CBD) “Turns Off” the Cancer Gene Involved in Metastasis Findings by Scientists at California Pacific Medical Center gives Scientific Support for Cannabis Science

“Cannabis Science (CBIS), a pioneering U.S. Biotech Company developing pharmaceutical products for global public health challenges, reports on a recent press release by the San Francisco NBC news, with new studies by Scientists at California Pacific Medical Center, which have shown that cannabidiol, (CBD -1.18%, news), has the ability to “turn off” a gene that causes breast and other types of cancers to metastasize, according to the San Francisco Chronicle newspaper.

NBC News reports, “The drug “has been shown to reduce pain and nausea” in cancer patients. AIDS patients also use cannabis to eat, sleep and otherwise be more functional. Turns out that cannabidiol has none of the psychotropic effects of marijuana as a whole. The researchers hope to move to clinical trials on humans soon to test the cannabidiol inhibition of metastasis, reported in the San Francisco Chronicle. “What they found is that the cannabinoid turns off the overexpression of ID-1, which makes the cells lose their ability to travel to distant tissues. In other words, it keeps the cells more local and blocks their ability to metastasize. (spread to a new location) The researchers stressed cannabidiol works only on cancer cells that have these high levels of ID-1 and these do not include all cancerous tumors but, rather, aggressive, metastatic cells. But they’ve found such high levels in leukemia, colorectal, pancreatic, lung, ovarian, brain and other cancers.””

http://money.msn.com/business-news/article.aspx?feed=BW&date=20120920&id=15582334

Induction of apoptosis by cannabinoids in prostate and colon cancer cells is phosphatase dependent.

Abstract

“AIM:

We hypothesized that the anticancer activity of cannabinoids was linked to induction of phosphatases.

MATERIALS AND METHODS:

The effects of cannabidiol (CBD) and the synthetic cannabinoid WIN-55,212 (WIN) on LNCaP (prostate) and SW480 (colon) cancer cell proliferation were determined by cell counting; apoptosis was determined by cleavage of poly(ADP)ribose polymerase (PARP) and caspase-3 (Western blots); and phosphatase mRNAs were determined by real-time PCR. The role of phosphatases and cannabinoid receptors in mediating CBD- and WIN-induced apoptosis was determined by inhibition and receptor knockdown.

RESULTS:

CBD and WIN inhibited LNCaP and SW480 cell growth and induced mRNA expression of several phosphatases, and the phosphatase inhibitor sodium orthovanadate significantly inhibited cannabinoid-induced PARP cleavage in both cell lines, whereas only CBD-induced apoptosis was CB1 and CB2 receptor-dependent.

CONCLUSION:

Cannabinoid receptor agonists induce phosphatases and phosphatase-dependent apoptosis in cancer cell lines; however, the role of the CB receptor in mediating this response is ligand-dependent.”

http://www.ncbi.nlm.nih.gov/pubmed/22110202