Δ9-Tetrahydrocannabinol Reverses TNFα-induced Increase in Airway Epithelial Cell Permeability through CB2 Receptors.

Image result for Biochem Pharmacol

“Despite pharmacological treatment, bronchial hyperresponsiveness continues to deteriorate as airway remodelling persists in airway inflammation.

Previous studies have demonstrated that the phytocannabinoid Δ9-tetrahydrocannabinol (THC) reverses bronchoconstriction with an anti-inflammatory action.

The aim of this study was to investigate the effects of THC on bronchial epithelial cell permeability after exposure to the pro-inflammatory cytokine, TNFα. Calu-3 bronchial epithelial cells were cultured at air-liquid interface.

These data indicate that THC prevents cytokine-induced increase in airway epithelial permeability through CB2 receptor activation.

This highlights that THC, or other cannabinoid receptor ligands, could be beneficial in the prevention of inflammation-induced changes in airway epithelial cell permeability, an important feature of airways diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27641813

Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization.

Image result for autophagy journal

“Autophagy is considered primarily a cell survival process, although it can also lead to cell death. However, the factors that dictate the shift between these 2 opposite outcomes remain largely unknown. In this work, we used Δ9-tetrahydrocannabinol (THC, the main active component of marijuana, a compound that triggers autophagy-mediated cancer cell death) and nutrient deprivation (an autophagic stimulus that triggers cytoprotective autophagy) to investigate the precise molecular mechanisms responsible for the activation of cytotoxic autophagy in cancer cells. By using a wide array of experimental approaches we show that THC (but not nutrient deprivation) increases the dihydroceramide:ceramide ratio in the endoplasmic reticulum of glioma cells, and this alteration is directed to autophagosomes and autolysosomes to promote lysosomal membrane permeabilization, cathepsin release and the subsequent activation of apoptotic cell death. These findings pave the way to clarify the regulatory mechanisms that determine the selective activation of autophagy-mediated cancer cell death.”

http://www.ncbi.nlm.nih.gov/pubmed/27635674

From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

Image result for Physiol Rev.

“Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS).

This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs.

In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.”

http://www.ncbi.nlm.nih.gov/pubmed/27630175

A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis.

Image result for journal of pain research

“A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC) was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease.

Dose-dependent improvement in pain score was evident across all pain scale elements.

Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids.

Such an appraisal of descriptors might contribute to the identification of distinct pathophysiologic mechanisms and, ultimately, the development of mechanism-based treatment approaches for neuropathic pain, a condition that remains difficult to treat.”

http://www.ncbi.nlm.nih.gov/pubmed/27621666

Determination of cannabinoids in hemp nuts products in Taiwan by HPLC-MS/MS coupled with chemometric analysis: Quality evaluation and a pilot human study.

Image result for drug testing and analysis

“Hemp nuts are mature cannabis seeds obtained after hulling and stir-frying that are commonly used in traditional Chinese medicine for treating functional constipation. In this work, we screened hemp nut products, classified them, and verified the legality of consuming them.

A total of 18 products were purchased from Taiwan, China and Canada. Validated high-performance liquid chromatography with tandem mass spectrometry methods were developed for analyzing the cannabinoid (i.e., Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol) content of the products and the concentration of urinary 11-nor-9-carboxy-THC.

Chemometric techniques, namely hierarchical clustering analysis (HCA) and principal component analysis (PCA), were applied for rapidly classifying 11 concentrated powder products in Taiwan. A pilot human study comprising single and multiple administrations of a product with 1.5 µg/g of THC was conducted to examine the urinary 11-nor-9-carboxy-THC concentration. Through optimization of 32 full factorial design, using 60% isopropanol as the extraction solvent exhibited the highest yield ofcannabinoids and was applied as the optimal condition in further analysis.

The results of HCA and PCA on quality evaluation were in well agreement; however, the tested products possessed distinct CBD-to-THC ratios which ranged widely from 0.1:1 to 46.8:1. Particularly, the products with CBD-to-THC ratios higher than 1:1 were the majority in Taiwan.

Our data suggested that all the tested hemp nut products met the Taiwan restriction criteria of 10 µg/g of THC. We propose a usual consumption amount of hemp nut products in Taiwan would unlikely to violate the cut-off point of 15 ng/mL of urinary 11-nor-9-carboxy-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/27590030

Acute and chronic effects of cannabinoids on effort-related decision-making and reward learning: an evaluation of the cannabis ‘amotivational’ hypotheses

Psychopharmacology

“Cannabis acutely induced a transient amotivational state and CBD influenced the effects of THC on expected value. This is the first well powered, fully controlled study to objectively demonstrate the acute amotivational effects of THC.”  http://link.springer.com/article/10.1007/s00213-016-4383-x

“Cannabis reduces short-term motivation to work for money”  https://www.sciencedaily.com/releases/2016/09/160901211303.htm

Delineating the Efficacy of a Cannabis-Based Medicine at Advanced Stages of Dementia in a Murine Model.

 

Image result for J Alzheimers Dis.

“Previous reports have demonstrated that the combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) botanical extracts, which are the components of an already approved cannabis-based medicine, reduce the Alzheimer-like phenotype of AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage.

Here, we provide evidence that such natural cannabinoids are still effective in reducing memory impairment in AβPP/PS1 mice at advanced stages of the disease but are not effective in modifying the Aβ processing or in reducing the glial reactivity associated with aberrant Aβ deposition as occurs when administered at early stages of the disease.

The present study also demonstrates that natural cannabinoids do not affect cognitive impairment associated with healthy aging in wild-type mice.

The positive effects induced by Δ9-THC and CBD in aged AβPP/PS1 mice are associated with reduced GluR2/3 and increased levels of GABA-A Ra1 in cannabinoid-treated animals when compared with animals treated with vehicle alone.”

http://www.ncbi.nlm.nih.gov/pubmed/27567873

Severe motor and vocal tics controlled with Sativex®.

Image result for Australas Psychiatry

“A single case report on cannabinoid treatment for treatment-resistant Tourette syndrome (TS).

METHOD:

Our subject received 10.8 mg Tetrahydocannabinol and 10 mg cannabidiol daily, in the form of two oro-mucosal sprays of ‘Sativex®‘, twice daily. Assessment was pre-treatment and at week one, two, and four during treatment. He completed the Yale Global Tic Severity Scale as a subjective measure, and was videoed at each stage. The videos were objectively rated by two assessors, blind to the stage of treatment, using the Original Rush Videotape Rating Scale.

RESULTS:

Both subjective and objective measures demonstrated marked improvement in the frequency and severity of motor and vocal tics post-treatment. There was good interrater reliability of results.

CONCLUSIONS:

Our results support previous research suggesting that cannabinoids are a safe and effective treatment for TS and should be considered in treatment-resistant cases.

Further studies are needed to substantiate our findings.”

http://www.ncbi.nlm.nih.gov/pubmed/27558217

Cannabinoids and the gut: new developments and emerging concepts.

“Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.”

https://www.ncbi.nlm.nih.gov/pubmed/20117132/

An analgesia circuit activated by cannabinoids.

“Although many anecdotal reports indicate that marijuana and its active constituent, delta-9-tetrahydrocannabinol (delta-9-THC), may reduce pain sensation, studies of humans have produced inconsistent results. In animal studies, the apparent pain-suppressing effects of delta-9-THC and other cannabinoid drugs are confounded by motor deficits. Here we show that a brainstem circuit that contributes to the pain-suppressing effects of morphine is also required for the analgesic effects of cannabinoids. Inactivation of the rostral ventromedial medulla (RVM) prevents the analgesia but not the motor deficits produced by systemically administered cannabinoids. Furthermore, cannabinoids produce analgesia by modulating RVM neuronal activity in a manner similar to, but pharmacologically dissociable from, that of morphine. We also show that endogenous cannabinoids tonically regulate pain thresholds in part through the modulation of RVM neuronal activity. These results show that analgesia produced by cannabinoids and opioids involves similar brainstem circuitry and that cannabinoids are indeed centrally acting analgesics with a new mechanism of action.”

http://www.ncbi.nlm.nih.gov/pubmed/9759727