Marijuana as a possible treatment for HIV and cancer

Marijuana

“There’s been some interesting research on using THC (tetrahydrocannabinol), the principal psychoactive drug in marijuana, to help fight HIV, and damage cancer cells in some leukemias and possibly malignant tumors.

…the possibility exists that information from both of these research studies may produce beneficial results in the treatment of HIV and cancer.”

More: http://americablog.com/2014/02/marijuana-treatment-hiv-cancer.html

Weed Could Block H.I.V.’s Spread. No, Seriously.

“But the U.S. government won’t let scientists try out this promising treatment on humans… proving that an illegal drug can stop a deadly disease in humans—without testing it on them—is impossible…

THC is one of 500 active ingredients in marijuana. And marijuana, despite many studies proving its medical value, is sill classified by the government as a Schedule 1 Substance.

In the face of mounting evidence that it is beneficial in treating diseases… it remains a controlled substance.

During HIV infection, one of the earliest effects is that the virus spreads rapidly throughout the body and kills a significant part of cells in the gut and intestine. This activity damages the gut in a way that allows the HIV to leak through the cell wall of the intestines and into the bloodstream.

When THC is introduced into this environment, it activates the CB2 receptors in the intestines to build new, healthy bacterial cells that block the virus from leaking through the cell walls. In other words, the body works hard to keep bad stuff in the intestines and the good stuff out.

Put another way: HIV kills the cells that protect the walls— THC brings them back. Reducing the amount of the virus in the lower intestines could then help keep uninfected people uninfected.”

More: http://www.thedailybeast.com/articles/2014/02/15/weed-can-block-h-i-v-s-spread-no-seriously.html

Inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol in mouse spleen cells: a potential mechanism for cannabinoid-mediated immunosuppression.

“The ability of delta 9-Tetrahydrocannabinol (delta 9-THC) to modulate adenylate cyclase activity in mouse spleen cells was investigated…

delta 9-THC treated spleen cells demonstrated a 33% inhibition and a 66% inhibition in intracellular cAMP… respectively…

These studies suggest that inhibition of immune function by delta 9-THC may be mediated through the inhibition of intracellular cAMP early after antigen stimulation.”

http://www.ncbi.nlm.nih.gov/pubmed/1321935

Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase.

“A putative endogenous cannabinoid ligand, arachidonylethanolamide (termed “anandamide”), was isolated recently from porcine brain.

Here we demonstrate that this compound is a specific cannabinoid agonist and exerts its action directly via the cannabinoid receptors.

Anandamide specifically binds to membranes from cells transiently (COS) or stably (Chinese hamster ovary) transfected with an expression plasmid carrying the cannabinoid receptor DNA but not to membranes from control nontransfected cells.

Moreover, anandamide inhibited the forskolin-stimulated adenylate cyclase in the transfected cells and in cells that naturally express cannabinoid receptors (N18TG2 neuroblastoma) but not in control nontransfected cells. As with exogenous cannabinoids…

These data indicate that anandamide is an endogenous agonist that may serve as a genuine neurotransmitter for the cannabinoid receptor.”

http://www.ncbi.nlm.nih.gov/pubmed/8515284

Regulation of adenylate cyclase by cannabinoid drugs. Insights based on thermodynamic studies.

“The abilities of lipophilic cannabinoid drugs to regulate adenylate cyclase activity in neuroblastoma cell membranes were analyzed by thermodynamic studies…

These data suggest that, for the entropy-driven hormone-stimulated adenylate cyclase enzyme, less disorder of the system occurs in the presence of regulators that inhibit the enzyme via Gi.

In summary, thermodynamic data suggest that cannabidiol can influence adenylate cyclase by increasing membrane fluidity, but that the inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol is not related to membrane fluidization.”

http://www.ncbi.nlm.nih.gov/pubmed/2554920

“Regulation of adenylate cyclase in a cultured neuronal cell line by marijuana constituents, metabolites of delta-9-tetrahydrocannabinol, and synthetic analogs having psychoactivity.” http://www.ncbi.nlm.nih.gov/pubmed/2830535

Cannabinoid inhibition of adenylate cyclase. Biochemistry of the response in neuroblastoma cell membranes.

“The inhibition of adenylate cyclase activity by cannabimimetic compounds in a membrane fraction from cultured neuroblastoma cells has been examined. The inhibition was shown to be concentration-dependent over a nanomolar range for both delta 9-tetrahydrocannabinol and its synthetic analog…

This study points to the similarities between the enzyme inhibition by cannabimimetic compounds and by muscarinic cholinergic compounds. It is inferred that the cannabimimetic compounds must act via regulatory mechanisms similar to those operating for receptor-mediated inhibition of adenylate cyclase.”

http://www.ncbi.nlm.nih.gov/pubmed/2984538

Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana.

“delta 9Tetrahydrocannabinol (THC) has been shown to inhibit the activity of adenylate cyclase in the N18TG2 clone of murine neuroblastoma cells. The concentration of delta 9THC exhibiting half-maximal inhibition was 500 nM. delta 8Tetrahydrocannabinol was less active, and cannabinol was only partially active. Cannabidiol, cannabigerol, cannabichromene, olivetol and compounds having a reduced length of the C3 alkyl side chain were inactive. The metabolites of delta 8THC and delta 9THC hydroxylated at the C11 position were more potent than the parent drugs. However, hydroxylation at the C8 position of the terpenoid ring resulted in loss of activity. Compounds hydroxylated along the C3 alkyl side chain were equally efficacious but less potent than delta 9THC. These findings are compared to the pharmacology of cannabinoids reported for psychological effects in humans and behavioral effects in a variety of animal models.”

http://www.ncbi.nlm.nih.gov/pubmed/3601007

Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology.

“Cannabinoids, consisting of alkylresorcinol and monoterpene groups, are the unique secondary metabolites that are found only in Cannabis sativa. Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabichromene (CBC) are well known cannabinoids and their pharmacological properties have been extensively studied. Recently, biosynthetic pathways of these cannabinoids have been successfully established. Several biosynthetic enzymes including geranylpyrophosphate:olivetolate geranyltransferase, tetrahydrocannabinolic acid (THCA) synthase, cannabidiolic acid (CBDA) synthase and cannabichromenic acid (CBCA) synthase have been purified from young rapidly expanding leaves of C. sativa. In addition, molecular cloning, characterization and localization of THCA synthase have been recently reported. THCA and cannabigerolic acid (CBGA), its substrate, were shown to be apoptosis-inducing agents that might play a role in plant defense. Transgenic tobacco hairy roots expressing THCA synthase can produce THCA upon feeding of CBGA. These results open the way for biotechnological production of cannabinoids in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/17691992

Thermal isomerization of cannabinoid analogues.

“Thermal isomerization of CBC(an) to THC(an) [nonaromatic analogues of plant cannabinoids cannabichromene (CBC) and Delta(1)-tetrahydrocannabinol (THC), respectively] is predicted in silico and demonstrated experimentally. Density functional theory calculations support a similar isomerization mechanism for the corresponding plant cannabinoids. Docking studies suggest that THC(an), although nonaromatic, has a CB(1) receptor binding affinity similar to that of natural THC.”

http://www.ncbi.nlm.nih.gov/pubmed/19919138

Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation.

“Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other ‘thermo-TRP’s’, the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract…

CONCLUSIONS:

Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract.”

http://www.ncbi.nlm.nih.gov/pubmed/21726418