Therapeutical strategies for anxiety and anxiety-like disorders using plant-derived natural compounds and plant extracts.

Image result for Biomedicine & Pharmacotherapy

“Anxiety and anxiety-like disorders describe many mental disorders, yet fear is a common overwhelming symptom often leading to depression. Currently two basic strategies are discussed to treat anxiety: pharmacotherapy or psychotherapy. In the pharmacotherapeutical clinical approach, several conventional synthetic anxiolytic drugs are being used with several adverse effects. Therefore, studies to find suitable safe medicines from natural sources are being sought by researchers. The results of a plethora experimental studies demonstrated that dietary phytochemicals like alkaloids, terpenes, flavonoids, phenolic acids, lignans, cinnamates, and saponins or various plant extracts with the mixture of different phytochemicals possess anxiolytic effects in a wide range of animal models of anxiety. The involved mechanisms of anxiolytics action include interaction with γ-aminobutyric acid A receptors at benzodiazepine (BZD) and non-BZD sites with various affinity to different subunits, serotonergic 5-hydrodytryptamine receptors, noradrenergic and dopaminergic systems, glutamate receptors, and cannabinoid receptors. This review focuses on the use of both plant-derived natural compounds and plant extracts with anxiolytic effects, describing their biological effects and clinical application.”

https://www.ncbi.nlm.nih.gov/pubmed/28863384

 

Neuroimmmune interactions of cannabinoids in neurogenesis: focus on interleukin-1β (IL-1β) signalling.

Biochemical Society Transactions

“Neuroimmune networks and the brain endocannabinoid system contribute to the maintenance of neurogenesis.

Activation of cannabinoid receptors suppresses chronic inflammatory responses through the attenuation of pro-inflammatory mediators. Moreover, the endocannabinoid system directs cell fate specification of NSCs (neural stem cells) in the CNS (central nervous system).

The aim of our work is to understand better the relationship between the endocannabinoid and the IL-1β (interleukin-1β) associated signalling pathways and NSC biology, in order to develop therapeutical strategies on CNS diseases that may facilitate brain repair.

NSCs express functional CB1 and CB2 cannabinoid receptors, DAGLα (diacylglycerol lipase α) and the NSC markers SOX-2 and nestin. We have investigated the role of CB1 and CB2 cannabinoid receptors in the control of NSC proliferation and in the release of immunomodulators [IL-1β and IL-1Ra (IL-1 receptor antagonist)] that control NSC fate decisions. Pharmacological blockade of CB1 and/or CB2 cannabinoid receptors abolish or decrease NSC proliferation, indicating a critical role for both CB1 and CB2 receptors in the proliferation of NSC via IL-1 signalling pathways.

Thus the endocannabinoid system, which has neuroprotective and immunomodulatory actions mediated by IL-1 signalling cascades in the brain, could assist the process of proliferation and differentiation of embryonic or adult NSCs, and this may be of therapeutic interest in the emerging field of brain repair.

In summary, cannabinoids and IL-1β seem to play antagonistic roles in neurogenesis: although cannabinoids increase proliferation and induce formation and maturation of new neurons, IL-1β blocks proliferation and formation of new neurons, inducing a shift towards a glial fate. This may be important in situations such as in aging, neurodegenerative diseases, and lesions of the brain and spinal cord.”

Potential Therapeutical Contributions of the Endocannabinoid System towards Aging and Alzheimer’s Disease.

“Aging can lead to decline in cognition, notably due to neurodegenerative processes overwhelming the brain over time.

As people live longer, numerous concerns are rightfully raised toward long-term slowly incapacitating diseases with no cure, such as Alzheimer’s disease.

Since the early 2000’s, the role of neuroinflammation has been scrutinized for its potential role in the development of diverse neurodegenerative diseases notably because of its slow onset and chronic nature in aging.

Despite the lack of success yet, treatment of chronic neuroinflammation could help alleviate process implicated in neurodegenerative disease.

A growing number of studies including our own have aimed at the endocannabinoid system and unfolded unique effects of this system on neuroinflammation, neurogenesis and hallmarks of Alzheimer’s disease and made it a reasonable target in the context of normal and pathological brain aging.”

http://www.ncbi.nlm.nih.gov/pubmed/26425394

[From cannabis to selective CB2R agonists: molecules with numerous therapeutical virtues].

“Originally used in Asia for the treatment of pain, spasms, nausea and insomnia, marijuana is the most consumed psychotropic drug worldwide. The interest of medical cannabis has been reconsidered recently, leading to many scientific researches and commercialization of these drugs.

Natural and synthetic cannabinoids display beneficial antiemetic, anti-inflammatory and analgesic effects in numerous diseases, however accompanied with undesirable effects due to the CB1 receptor. Present researches focus on the design of therapeutical molecules targeting the CB2 receptors, and thus avoiding central side effects and therefore psychotropic effects caused by the CB1 receptor.”

http://www.ncbi.nlm.nih.gov/pubmed/23732102

Endogenous cannabinoid and opioid systems and their role in nicotine addiction.

Abstract

“Nicotine addiction is a complex behavioural alteration, in which many neuronal pathways and neurotransmitters are involved. For a long time, dopamine has been considered one of the most important neurotransmitters in mediating the rewarding effects of nicotine. In addition, a great amount of research suggests that the endogenous cannabinoid and opioid systems play an overall modulatory effect on the reward circuitry and participate in the addictive properties of most of the prototypical drugs of abuse. This review focuses on recent behavioural and biochemical data involving these systems in the different processes that contribute to tobacco addiction. A possible role for the endogenous cannabinoid and opioid systems in the rewarding properties of nicotine as well as in the development of nicotine physical dependence and relapse to nicotine-seeking behaviour will be examined. According to preclinical studies, clinical trials suggest that the manipulation of these systems with cannabinoid or opioid antagonists could be a potential therapeutical strategy for treating nicotine addiction.”

http://www.ncbi.nlm.nih.gov/pubmed/20017727

The role of the endogenous cannabinoid system in drug addiction.

Abstract

“This review aims to present the more recent knowledge on the role of the endocannabinoid system in drug addiction. For a long time, dopamine has been consistently associated with the reinforcing effects of most drugs of abuse but, recently, pharmacological evidence points to the possibility that pharmacological management of the endocannabinoid system might not only block the direct reinforcing effect of cannabis, opioids, nicotine and ethanol, but also prevent the relapse to various drugs of abuse including opioids, cocaine, nicotine, alcohol and amphetamine. Preclinical and clinical studies suggest that the manipulation of the endocannabinoid system through the CB(1) receptor antagonist SR-141716A (rimonabant) might constitute a new therapeutical strategy for treating addiction across different classes of abused drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/18560613

Cannabinoids reduce symptoms of Tourette’s syndrome.

Abstract

“Currently, the treatment of Tourette’s syndrome (TS) is unsatisfactory. Therefore, there is expanding interest in new therapeutical strategies. Anecdotal reports suggested that the use of cannabis might improve not only tics, but also behavioural problems in patients with TS. A single-dose, cross-over study in 12 patients, as well as a 6-week, randomised trial in 24 patients, demonstrated that Delta9-tetrahydrocannabinol (THC), the most psychoactive ingredient of cannabis, reduces tics in TS patients. No serious adverse effects occurred and no impairment on neuropsychological performance was observed. If well-established drugs either fail to improve tics or cause significant adverse effects, in adult patients, therapy with Delta9-THC should be tried. At present, it remains unclear whether herbal cannabis, different natural or synthetic cannabinoid CB1-receptor agonists or agents that interfere with the inactivation of endocannabinoids, may have the best adverse effect profile in TS.”

http://www.ncbi.nlm.nih.gov/pubmed/14521482