Cannabinoid receptor agonism suppresses tremor, cognition disturbances and anxiety-like behaviors in a rat model of essential tremor.

“Cognitive and motor disturbances are serious consequences of tremor induced by motor disorders. Despite a lack of effective clinical treatment, some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of tremor.

In the current study, the effects of WIN55, 212-2 (WIN), a cannabinoid receptor (CBR) agonist, on harmaline-induced motor and cognitive impairments was studied.

The neuroprotective and anxiolytic effects of WIN demonstrated in the current study can be offered cannabinoid receptor (CBR) agonism as a potential neuroprotective agent in the treatment of patients with tremor that manifest mental dysfunctions.”

http://www.ncbi.nlm.nih.gov/pubmed/27317835

Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood.

“Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES.

Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders.

Here we examined whether cannabinoids administered during “late adolescence” (extensive cannabis use in humans at the ages 18-25) could reverse the long-term adverse effects of ES on neurocognitive function in adulthood.

WIN administered during late adolescence prevented these stress-induced impairments and reduced anxiety levels.

There is a crucial role of the endocannabinoid system in the effects of early life stress on behavior at adulthood.”

http://www.ncbi.nlm.nih.gov/pubmed/27317195

Exercise as an adjunctive treatment for cannabis use disorder.

“Despite cannabis being the most widely used illicit substance in the United States, individuals diagnosed with cannabis use disorder (CUD) have few well-researched, affordable treatment options available to them.

Although found to be effective for improving treatment outcomes in other drug populations, exercise is an affordable and highly accessible treatment approach that has not been routinely investigated in cannabis users. The aim of this paper is to inform the topic regarding exercise’s potential as an adjunctive treatment for individuals with CUD.

Given that exercise is a potent activator of the eCB system, it is mechanistically plausible that exercise could be an optimal method to supplement cessation efforts by reducing psychophysical withdrawal, managing stress, and attenuating drug cravings.”

http://www.ncbi.nlm.nih.gov/pubmed/27314543

“Exercise activates the endocannabinoid system.”  http://www.ncbi.nlm.nih.gov/pubmed/14625449

Inhibition of autophagy and enhancement of endoplasmic reticulum stress increase sensitivity of osteosarcoma Saos-2 cells to cannabinoid receptor agonist WIN55,212-2.

“WIN55,212-2, a cannabinoid receptor agonist, can activate cannabinoid receptors, which has proven anti-tumour effects in several tumour types. Studies showed that WIN can inhibit tumour cell proliferation and induce apoptosis in diverse cancers.

However, the role and mechanism of WIN in osteosarcoma are still unclear. In this study, we examined the effect of WIN55,212-2 on osteosarcoma cell line Saos-2 in terms of cell viability and apoptosis. Meanwhile, we further explored the role of endoplasmic reticulum stress and autophagy in apoptosis induced by WIN55,212-2.

Our results showed that the cell proliferation of Saos-2 was inhibited by WIN55,212-2 in a dose-dependent and time-dependent manner. WIN55,212-2-induced Saos-2 apoptosis through mitochondrial apoptosis pathway. Meanwhile, WIN55,212-2 can induce endoplasmic reticulum stress and autophagy in Saos-2 cells. Inhibition of autophagy and enhancement of endoplasmic reticulum stress increased apoptosis induced by WIN55,212-2 in Saos-2 cells.

These findings indicated that WIN55,212-2 in combination with autophagic inhibitor or endoplasmic reticulum stress activator may shed new light on osteosarcoma treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27309350

Cannabidiol Modulates Fear Memory Formation through Interactions with Serotonergic Transmission in the Mesolimbic System.

“Emerging evidence suggests that the largest phytochemical component of cannabis, cannabidiol (CBD), may possess pharmacotherapeutic properties in the treatment of neuropsychiatric disorders.

CBD has been reported to functionally interact with both the mesolimbic dopamine (DA) and serotonergic (5-HT) receptor systems.

Our findings demonstrate a novel NAcVTA circuit responsible for the behavioral and neuronal effects of CBD within the mesolimbic system via functional interactions with serotonergic 5-HT1A receptor signalling.”

http://www.ncbi.nlm.nih.gov/pubmed/27296152

An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain from Spinal Cord Injury and Disease.

“Using eight hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, the majority of whom were experiencing pain despite traditional treatment.

After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta-9-tetrahydrocannabinol on three separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was utilized to attempt to reduce the placebo effect.

Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model demonstrated a significant analgesic response for vaporized cannabis.

When subjective and psychoactive side effects (e.g., good drug effect, feeling high, etc.) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all p<0.0004). Psychoactive and subjective effects were dose dependent.

Measurement of neuropsychological performance proved challenging because of various disabilities in the population studied. As the two active doses did not significantly differ from each other in terms of analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord.

PERSPECTIVE:

A cross-over, randomized, placebo-controlled human laboratory experiment involving administration of vaporized cannabis was performed in patients with neuropathic pain related to spinal cord injury and disease. This study supports consideration of future research that would include longer duration studies over weeks to months in order to evaluate the efficacy of medicinal cannabis in patients with central neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/27286745

Cannabinoids cool the intestine

Logo of nihpa

“Inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn’s disease affects over a million people in the United States, with an estimated indirect cost from work loss of $3.6 billion annually. Many of these individuals suffer from pain, diarrhea and poor ability to digest their food, and in up to half of those with IBD, the disease is so severe that it ultimately requires surgery to remove the affected bowel segment.

Historically, marijuana has been used to treat diarrhea and has been advocated for the treatment of a variety of other gastrointestinal problems, including Crohn’s disease.

More recent pharmacological studies have clearly established that cannabinoids inhibit gastrointestinal motility and secretion by acting on CB1 receptors located on the terminals of both intrinsic and extrinsic submucosal neurons.

When administered to mice with chemically induced enteritis, cannabinoids also reduce inflammation and fluid accumulation in the gut.

Cannabinoids inhibit motility and secretion in the intestine.

They are now assigned the additional task of curbing excessive inflammation, suggesting that drugs targeting the endogenous cannabinoid system could be exploited for inflammatory bowel disease.

These findings may offer a new therapeutic approach to IBD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516444/

 

Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: Involvement of CB2

Logo of brjcancer

“We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB1 and CB2). In this study, we investigated the role of CB2 receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.

This study defines the involvement of CB2-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB2 agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer.

Cannabinoids, the active components of Cannabis sativa and their derivatives, exert a wide spectrum of modulatory actions and pharmacological activities in the brain as well as in the periphery, and therefore, the therapeutic potential of cannabinoids has gained much attention during the past few years. One of the most exciting areas of current research in the therapeutic potential of cannabinoids is cancer.

Recent evidence suggests that cannabinoids are powerful regulators of cell growth and differentiation. They have been shown to exert anti-tumoural effects by decreasing viability, proliferation, adhesion and migration on various cancer cells, thereby suggesting the potential use of cannabinoids in the treatment of gliomas, prostate and breast cancers and malignancies of immune origin.

Overall, our data show a role for the cannabinoid receptor CB2 in the anti-tumour effect of cannabinoids on prostate cells in vitroand in vivo. There is considerable interest in the application of selective CB2 receptor agonists, which are devoid of typical marijuana-like psychoactive properties of CB1 agonists, for future cannabinoid-based anticancer therapies. Therefore, our findings point to the potential application of cannabinoid receptor type 2 ligands as anti-tumour agents in prostate cancer.”

The effect of spinally administered WIN 55,212-2, a cannabinoid agonist, on thermal pain sensitivity in diabetic rats.

“These data show that cannabinoids have potent antinociceptive effects through direct actions in the spinal dorsal horn of nociceptive pathway. This suggests that intrathecally administered cannabinoids may offer hopeful strategies for the treatment of diabetic neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/27279983

Opioid and cannabinoid synergy in a mouse neuropathic pain model.

“Clinical studies have reported that pan-cannabinoid receptor agonists may have efficacy in neuropathic pain states and that this might be enhanced by co-administration with opioids. While cannabinoid-opioid analgesic synergy has been demonstrated in animal models of acute pain, it has not been examined in neuropathic pain models. We examined the effect of combination treatment with cannabinoid and opioid receptor agonists on allodynia and side-effects in a nerve injury induced neuropathic pain model.

These findings indicate that combination administration of non-selective opioid and cannabinoid receptor agonists synergistically reduces nerve injury induced allodynia, while producing side-effects in an additive manner. This suggests that combination treatment has an improved anti-allodynic potency and therapeutic index in a neuropathic pain model.”

http://www.ncbi.nlm.nih.gov/pubmed/27278681