Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice.

“Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motoneurons in the spinal cord, brain stem, and motor cortex. However, despite intensive research, an effective treatment for this disease remains elusive. In this study we show that treatment of postsymptomatic, 90-day-old SOD1G93A mice with a synthetic cannabinoid, WIN55,212-2, significantly delays disease progression…

Increasing evidence suggests that cannabinoids might have therapeutic potential in neurodegenerative conditions. In a variety of in vivo and in vitro models, cannabinoids exert neuroprotective effects under excitotoxic, ischemic, and inflammatory conditions. This combination of neuroprotective actions might be particularly relevant to ALS and suggests that cannabinoids might have a greater impact on disease progression than the established therapy that targets excitotoxicity alone.

… the neuroprotective effects observed following pharmacological and genetic augmentation of cannabinoid levels are not necessarily mediated by the CB1 receptor, and indeed inhibition of the CB1 receptor might actually be neuroprotective. Therefore, in contrast to previous studies that have suggested that cannabinoids exert neuroprotection via the CB1 receptor, the present results suggest that activation of CB2 receptors might underlie the beneficial effects of cannabinoids at least in SOD1G93A mice .”

Together these results show that cannabinoids have significant neuroprotective effects in this model of ALS and suggest that these beneficial effects may be mediated by non-CB1 receptor mechanisms.”

http://www.fasebj.org/content/20/7/1003.long

The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset.

“Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive motor neuron loss, paralysis and death within 2-5 years of diagnosis. Currently, no effective pharmacological agents exist for the treatment of this devastating disease. Neuroinflammation may accelerate the progression of ALS. Cannabinoids produce anti-inflammatory actions via cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), and delay the progression of neuroinflammatory diseases…

 …treatment with non-selective cannabinoid partial agonists prior to, or upon, symptom appearance minimally delays disease onset and prolongs survival through undefined mechanisms…

…Δ9-Tetrahydrocannabinol (Δ9-THC) is the main psychoactive constituent in the plant Cannabis sativa (marijuana) and produces its effects by activation of cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) cannabinoid receptors. CB1 receptors are expressed throughout the CNS, while CB2 receptors are expressed predominantly in immune cells and non-neuronal tissues. Therapeutic agents which modulate the cann-abinoid system are effective in treating a wide variety of disorders characterized by inflammation. More specifically, drugs which activate CB2 receptors successfully improve the symptoms of several inflammatory diseases…

More importantly, daily injections of the selective CB2 agonist AM-1241, initiated at symptom onset, increase the survival interval after disease onset by 56%. Therefore, CB2 agonists may slow motor neuron degeneration and preserve motor function, and represent a novel therapeutic modality for treatment of ALS.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819701/

 

AM1241, a cannabinoid CB2 receptor selective compound, delays disease progression in a mouse model of amyotrophic lateral sclerosis.

“Effective treatment for amyotrophic lateral sclerosis (ALS) remains elusive. Motor neuron degeneration is the primary pathology in ALS; however non-neuronal cells contribute to the disease process. In particular, inflammatory processes have been shown to play an important role. AM1241 is a cannabinoid CB2 receptor selective agonist that has been shown to be effective in models of inflammation and hyperalgesia. Here we report that treatment with AM1241 was effective at slowing signs of disease progression when administered after onset of signs in an ALS mouse model (hSOD1(G93A) transgenic mice)…. As AM1241 was well tolerated by the animals, cannabinoid CB2 receptor-selective compounds may be the basis for developing new drugs for the treatment of ALS and other chronic neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/16781706

The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis.

Abstract

“Multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are chronic diseases of the central nervous system (CNS), featured by a complex interplay between inflammation and neurodegeneration. Increasing evidence supports the involvement of the endocannabinoid system (ECS) in both inflammatory and neurodegenerative processes typical of these pathological conditions. Exogenous or endogenous cannabinoids regulate the function of immune system by limiting immune response. On the other hand, by preventing excitotoxic damage, cannabinoids protect neuronal integrity and function. Of note, the ECS not only plays a role as modulator of disease processes, but it can also be disrupted by the same diseases. Agents modulating cannabinoid receptors or endocannabinoid tone provide promising therapeutic opportunities in the treatment of inflammatory neurodegenerative disorders of the CNS.”

http://www.ncbi.nlm.nih.gov/pubmed/20353778

Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ9-THCV in animal models of Parkinson’s disease

“Previous findings have indicated that a cannabinoid, such as Δ(9)-THCV, which has antioxidant properties and the ability to activate CB(2) receptors but to block CB(1) , might be a promising therapy for alleviating symptoms and delaying neurodegeneration in Parkinson’s disease (PD).

…Given its antioxidant properties and its ability to activate CB(2) but to block CB(1) receptors, Δ(9)-THCV has a promising pharmacological profile for delaying disease progression in PD and also for ameliorating parkinsonian symptoms…

Conclusion

In summary, given its antioxidant properties and its ability to activate CB2 but block CB1 receptors at a dose of 2 mg·kg−1, Δ9-THCV seems to have an interesting and therapeutically promising pharmacological profile. Thus, in contrast to other phytocannabinoids that have been investigated to date, it shows promise both for the treatment of disease progression in PD and for the relief of PD symptoms. This represents an important advance in the search for potential novel anti-parkinsonian agents, since Δ9-THCV administered alone or in combination with CBD may provide a much needed improved treatment for PD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165958/

Enhancing activity of marijuana-like chemicals in brain helps treat Parkinson’s symptoms in mice, Stanford study finds

Image result for stanford medicine logo

“Marijuana-like chemicals in the brain may point to a treatment for the debilitating condition of Parkinson’s disease. In a study published in the Feb. 8 issue of Nature, researchers from the Stanford University School of Medicine report that endocannabinoids, naturally occurring chemicals found in the brain that are similar to the active compounds in marijuana and hashish, helped trigger a dramatic improvement in mice with a condition similar to Parkinson’s.

“This study points to a potentially new kind of therapy for Parkinson’s disease,” said senior author Robert Malenka, MD, PhD, the Nancy Friend Pritzker Professor in Psychiatry and Behavioral Sciences. “Of course, it is a long, long way to go before this will be tested in humans, but nonetheless, we have identified a new way of potentially manipulating the circuits that are malfunctioning in this disease.”

Malenka and postdoctoral scholar Anatol Kreitzer, PhD, the study’s lead author, combined a drug already used to treat Parkinson’s disease with an experimental compound that can boost the level of endocannabinoids in the brain. When they used the combination in mice with a condition like Parkinson’s, the mice went from being frozen in place to moving around freely in 15 minutes. “They were basically normal,” Kreitzer said.”

https://med.stanford.edu/news/all-news/2007/02/enhancing-activity-of-marijuana-like-chemicals-in-brain-helps-treat-parkinsons-symptoms-in-mice-stanford-study-finds.html

“Brain chemicals may aid treatment of Parkinson’s”  http://news.stanford.edu/news/2007/february14/med-brain-021407.html

Natural brain substance linked to Parkinson’s symptoms

“Neuroscientists have found that a substance similar to the active ingredient in marijuana but produced naturally in the brain helps to control mobility — and may offer a novel target for treating Parkinson’s disease.

The findings by Stanford University researchers, reported in the latest issue of the journal Nature, show how marijuana-like “endocannabinoids” — one of the many chemicals used in the brain to transmit signals — form part of the neural machinery that directs normal physical movement.

A shortage of the endocannabinoids, the scientists found, can knock the system out of balance to produce the characteristic tremor, rigidity and other mobility problems of Parkinson’s disease patients…”

Read more; http://www.sfgate.com/health/article/Natural-brain-substance-linked-to-Parkinson-s-2650879.php

Study: Cannabis May Relieve Parkinson’s Related Pain

(December 22, 2012) “People suffering from Parkinson’s disease often experience random pains. Until recently these pains were not conclusively linked to the disease. However, a recent study conducted at Rabin Medical Center has not only shown that the pain is a symptom of the disease, but also suggests a possible treatment – cannabis.

“50 to 80 percent of Parkinson’s patients suffer from pain that could not be treated properly,” says Professor Ruth Djaldetti, senior neurologist and Head of the Movement Disorder Clinic, who conducted the research. “In light of the study’s results, we could treat the pain efficiently and improve the patient’s quality of life.”

The research examined eight genes known to be involved in pain, among 237 patients with Parkinson’s disease. They found that those suffering from this type of pain have gene sequence changes associated with the activity of cannabis-like substances produced in the brain and another gene associated with pain transmission.

According to Djaldetti, the results of the study support the approach that patients suffering from this type of pain might be able to find relief by treatment with cannabis. Despite the promising results, Djaldetti says that further research should be done on the subject, so that in the future, medical treatment can be adjusted according to individual gene-mapping.

The study was published in the European Journal of Pain.”http://onlinelibrary.wiley.com/doi/10.1002/j.1532-2149.2012.00134.x/abstract

http://nocamels.com/2012/12/study-cannabis-may-relieve-parkinsons-related-pain/

Therapeutic potential of cannabinoids in the treatment of neuroinflammation associated with Parkinson’s disease.

Abstract

“The cannabinoid system is represented by two principal receptor subtypes, termed CB1 and CB2, along with several endogenous ligands. In the central nervous system it is involved in several processes. CB1 receptors are mainly expressed by neurons and their activation is primarily implicated in psychotropic and motor effects of cannabinoids. CB2 receptors are expressed by glial cells and are thought to participate in regulation of neuroimmune reactions. This review aims to highlight several reported properties of cannabinoids that could be used to inhibit the adverse neuroinflammatory processes contributing to Parkinson’s disease and possibly other neurodegenerative disorders. These include anti-oxidant properties of phytocannabinoids and synthetic cannabinoids as well as hypothermic and antipyretic effects. However, cannabinoids may also trigger signaling cascades leading to impaired mitochondrial enzyme activity, reduced mitochondrial biogenesis, and increased oxidative stress, all of which could contribute to neurotoxicity. Therefore, further pharmacological studies are needed to allow rational design of new cannabinoid-based drugs lacking detrimental in vivo effects.”

http://www.ncbi.nlm.nih.gov/pubmed/21699489

Cannabidiol for the treatment of psychosis in Parkinson’s disease.

Abstract

“The management of psychosis in Parkinson’s disease (PD) has been considered a great challenge for clinicians and there is a need for new pharmacological intervention. Previously an antipsychotic and neuroprotective effect of Cannabidiol (CBD) has been suggested. Therefore, the aim of the present study was to directly evaluate for the first time, the efficacy, tolerability and safety of CBD on PD patients with psychotic symptoms. This was an open-label pilot study. Six consecutive outpatients (four men and two women) with the diagnosis of PD and who had psychosis for at least 3 months were selected for the study. All patients received CBD in flexible dose (started with an oral dose of 150 mg/day) for 4 weeks, in addition to their usual therapy. The psychotic symptoms evaluated by the Brief Psychiatric Rating Scale and the Parkinson Psychosis Questionnaire showed a significant decrease under CBD treatment. CBD did not worsen the motor function and decreased the total scores of the Unified Parkinson’s Disease Rating Scale. No adverse effect was observed during the treatment. These preliminary data suggest that CBD may be effective, safe and well tolerated for the treatment of the psychosis in PD.”

http://www.ncbi.nlm.nih.gov/pubmed/18801821