Phytocannabinoids: Useful Drugs for the Treatment of Obesity? Special Focus on Cannabidiol.

Image result for frontiers in endocrinology

“Currently, an increasing number of diseases related to insulin resistance and obesity is an alarming problem worldwide. It is well-known that the above states can lead to the development of type 2 diabetes, hypertension, and cardiovascular diseases. An excessive amount of triacylglycerols (TAGs) in a diet also evokes adipocyte hyperplasia and subsequent accumulation of lipids in peripheral organs (liver, cardiac muscle). Therefore, new therapeutic methods are constantly sought for the prevention, treatment and alleviation of symptoms of the above mentioned diseases.

Currently, much attention is paid to Cannabis derivatives-phytocannabinoids, which interact with the endocannabinoid system (ECS) constituents. Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) are the most abundant compounds of Cannabis plants and their therapeutic application has been suggested. CBD is considered as a potential therapeutic agent due to its anti-inflammatory, anti-oxidant, anti-tumor, neuroprotective, and potential anti-obesity properties. Therefore, in this review, we especially highlight pharmacological properties of CBD as well as its impact on obesity in different tissues.”

https://www.ncbi.nlm.nih.gov/pubmed/32194509

“A well-known ancient plant Cannabis sativa has been a subject of scientific interest for over 50 years. Moreover, it has been used for recreational and medical purposes for thousands of years. The plant comprises about 100 phytocannabinoids, which are C21 terpenophenolic constituents. Nowadays, the most-studied phytocannabinoids are: Δ9– tetrahydrocannabinol (Δ9-THC), Δ9-tetrahydrocannabivarin (Δ9-THCV), cannabinol (CBN), cannabidiol (CBD), cannabidivarin (CBDV), cannabigerol (CBG), and cannabichromene (CBC). So far, many studies have shown therapeutic properties of the above mentioned Cannabis compounds. Therefore, the aim of the current review is to focus on the emerging potential of CBD and other phytocannabinoids, which act as novel therapeutic agents in obesity treatment. From the existing data, we can conclude that CBD has the promising potential as a therapeutic agent and might be effective in alleviating the symptoms of insulin resistance, type 2 diabetes and metabolic syndrome.”

https://www.frontiersin.org/articles/10.3389/fendo.2020.00114/full

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects of cannabidiol (CBD) in neuropsychiatric disorders: A review of pre-clinical and clinical findings.

Progress in Molecular Biology and Translational Science“Cannabis sativa (cannabis) is one of the oldest plants cultivated by men. Cannabidiol (CBD) is the major non-psychomimetic compound derived from cannabis. It has been proposed to have a therapeutic potential over a wide range of neuropsychiatric disorders.

In this narrative review, we have summarized a selected number of pre-clinical and clinical studies, examining the effects of CBD in neuropsychiatric disorders. In some pre-clinical studies, CBD was demonstrated to potentially exhibit anti-epileptic, anti-oxidant, anti-inflammatory anti-psychotic, anxiolytic and anti-depressant properties. Moreover, CBD was shown to reduce addictive effects of some drugs of abuse.

In clinical studies, CBD was shown to be safe, well-tolerated and efficacious in mitigating the symptoms associated with several types of seizure disorders and childhood epilepsies.

Given that treatment with CBD alone was insufficient at managing choreic movements in patients with Huntington’s disease, other cannabis-derived treatments are currently being investigated. Patients with Parkinson’s disease (PD) have reported improvements in sleep and better quality of life with CBD; however, to fully elucidate the therapeutic potential of CBD on the symptoms of PD-associated movement disorders, larger scale, randomized, placebo-controlled studies still need to be conducted in the future.

Currently, there are no human studies that investigated the effects of CBD in either Alzheimer’s disease or unipolar depression, warranting further investigation in this area, considering that CBD was shown to have effects in pre-clinical studies.

Although, anxiolytic properties of CBD were reported in the Social Anxiety Disorder, antipsychotic effects in schizophrenia and anti-addictive qualities in alcohol and drug addictions, here too, larger, randomized, placebo-controlled trials are needed to evaluate the therapeutic potential of CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31601406

https://www.sciencedirect.com/science/article/pii/S187711731930095X?via%3Dihub

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects of cannabinoids in Amyotrophic Lateral Sclerosis (ALS) murine models: A systematic review and meta-analysis.

Publication cover image

“Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that results from motor neuron damage.

Cannabinoids have been proposed as treatments for ALS due to their anti-excitotoxicity, anti-oxidant, and anti-inflammatory effects.

This review provides some evidence for the efficacy of cannabinoids in prolonging survival time in an ALS mouse model. A delay in disease progression is also suggested following cannabinoid treatment”

https://www.ncbi.nlm.nih.gov/pubmed/30520038

https://onlinelibrary.wiley.com/doi/abs/10.1111/jnc.14639

“The endocannabinoid system in amyotrophic lateral sclerosis. There is increasing evidence that cannabinoids and manipulation of the endocannabinoid system may have therapeutic value in ALS, in addition to other neurodegenerative conditions. Cannabinoids exert anti-glutamatergic and anti-inflammatory actions through activation of the CB(1) and CB(2) receptors, respectively. Cannabinoid agents may also exert anti-oxidant actions by a receptor-independent mechanism. Therefore the ability of cannabinoids to target multiple neurotoxic pathways in different cell populations may increase their therapeutic potential in the treatment of ALS.”  https://www.ncbi.nlm.nih.gov/pubmed/18781981

http://www.thctotalhealthcare.com/category/amyotrophic-lateral-sclerosis-als-lou-gehrigs-disease/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid CB2 receptors are involved in the protection of RAW264.7 macrophages against the oxidative stress: an in vitro study.

Image result for European Journal of Histochemistry

“Research in the last decades has widely investigated the anti-oxidant properties of natural products as a therapeutic approach for the prevention and the treatment of oxidative-stress related disorders.

In this context, several studies were aimed to evaluate the therapeutic potential of phytocannabinoids, the bioactive compounds of Cannabis sativa.

Here, we examined the anti-oxidant ability of Cannabigerol (CBG), a non-psychotropic cannabinoid, still little known, into counteracting the hydrogen peroxide (H2O2)-induced oxidative stress in murine RAW264.7 macrophages. In addition, we tested selective receptor antagonists for cannabinoid receptors and specifically CB1R (SR141716A) and CB2R (AM630) in order to investigate through which CBG may exert its action.

Taken together, our in vitro results showed that CBG is able to counteract oxidative stress by activation of CB2 receptors.

Based on its antioxidant activities, CBG may hold great promise as an anti-oxidant agent and therefore used in clinical practice as a new approach in oxidative-stress related disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28348416

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke.

pharmaceuticals-logo

“Cannabis contains the psychoactive component delta⁸-tetrahydrocannabinol (delta⁸-THC), and the non-psychoactive components cannabidiol (CBD), cannabinol, and cannabigerol.

It is well-known that delta⁸-THC and other cannabinoid CB₁ receptor agonists are neuroprotective during global and focal ischemic injury.

Additionally, delta⁸-THC also mediates psychological effects through the activation of the CB₁ receptor in the central nervous system.

In addition to the CB₁ receptor agonists, cannabis also contains therapeutically active components which are CB₁ receptor independent.

Of the CB₁ receptor-independent cannabis, the most important is CBD.

In the past five years, an increasing number of publications have focused on the discovery of the anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD.

In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB₁ receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In this review, we will discuss the therapeutic possibility of CBD as a cerebroprotective agent, highlighting recent pharmacological advances, novel mechanisms, and therapeutic time window of CBD in ischemic stroke.”

https://www.ncbi.nlm.nih.gov/pubmed/27713349

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Modulation of cellular redox homeostasis by the endocannabinoid system

“The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions.

Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types…

To conclude, there is growing appreciation that the ECS may play an important role in the regulation of cellular redox homeostasis…

Indeed, the studies highlighted in this review show that ECS function can impact upon free radical production in a number of different ways.

Crucially, given the importance of redox status in the development of numerous pathologies, these findings identify ECS components as potential therapeutic targets for the treatment of oxidative stress-related neurological, cardiovascular and metabolic disorders.”

http://rsob.royalsocietypublishing.org/content/6/4/150276

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

NEUROPROTECTIVE EFFECTS OF CANNABIS SATIVA ALCOHOLIC EXTRACT AGAINST SPINAL ALPHA MOTONEURONS DEGENERATION IN MALE TYPE II DIABETIC RATS

“Diabetic neourophaty is one of the long-term usual outcomes of diabetes.

According to anti-tumor, anti-diabetic and anti-oxidant effects of Cannabis sativa, the aim of this research was to investigate the effect of Cannabis sativa alcoholic extract on Alpha motoneurons degeneration after sciatic nerve compression in diabetic rats…

Conclusion: Using alcoholic extract of Cannabis sativa as a neuroprotective agent can prevent the progression of neural system disorders as a result of hyperglycemia.”

http://en.journals.sid.ir/ViewPaper.aspx?ID=278407

http://www.thctotalhealthcare.com/category/diabetes/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke

“Cannabis contains over 60 different terpeno-phenol compounds…

cannabidiol (CBD), cannabigerol (CBG), cannabidivarin (CBDV) are known as non-psychoactive components of cannabis.

These compounds have shown anti-inflammatory, immunosuppressive, analgesic, anxiolytic and anti-cancer effects…

Cannabinoids may play a role in neuroprotection in disorders such as stroke, Parkinson’s disease, traumatic brain injury and epilepsy…

It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury…

Accumulating data now suggest that cannabinoid CB1 receptors contribute to neuroprotection… Emerging data now support the evidence of the anti-inflammatory action of CBD…

 We have previously reported that CBD  has a potent and long-lasting neuroprotective effect when administered both pre- and post-ischemia, whereas only pre-ischemic treatment with delta9-THC reduced the infarction size…

These results suggest that CBD may prevent post-ischemic injury progressively induced by ischemic stroke….

…anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In the last 10 years, it has been possible to demonstrate that CBD has the following unique therapeutic profile: 1) a cannabinoid receptor-independent mechanism, 2) long-lasting cerebro- protective effect after ischemic stroke, and lack of development of tolerance.

Moreover, CBD has almost no side effects, including psychotropic activity.

Preliminary studies highlight the fact that the multifunctional actions of CBD may lead to benefits in more complex systems within the brain after ischemic stroke.

CBD offers new therapeutic possibilities for treating ischemic stroke…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036658/

http://www.thctotalhealthcare.com/category/stroke-2/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Regulation of neuroinflammation by herbal medicine and its implications for neurodegenerative diseases. A focus on traditional medicines and flavonoids.

“Herbal medicine has long been used to treat neural symptoms. Although the precise mechanisms of action of herbal drugs have yet to be determined, some of them have been shown to exert anti-inflammatory and/or anti-oxidant effects in a variety of peripheral systems.

 Now, as increasing evidence indicates that neuroglia-derived chronic inflammatory responses play a pathological role in the central nervous system, anti-inflammatory herbal medicine and its constituents are being proved to be a potent neuroprotector against various brain pathologies.

 Structural diversity of medicinal herbs makes them valuable source of novel lead compounds against therapeutic targets that are newly discovered by genomics, proteomics, and high-throughput screening.”

http://www.ncbi.nlm.nih.gov/pubmed/15956812

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The role of the endocannabinoid system in Alzheimer’s disease: facts and hypotheses.

“Unlike other neuroinflammatory disorders, like Parkinson’s disease, Huntington’s disease and multiple sclerosis, little is still known of the role of the endocannabinoid system in Alzheimer’s disease (AD). This is partly due to the poor availability of animal models that are really relevant to the human disease, and to the complexity of AD as compared to other neurological states. Nevertheless, the available data indicate that endocannabinoids are likely to play in this disorder a role similar to that suggested in other neurodegenerative diseases, that is, to represent an endogenous adaptive response aimed at counteracting both the neurochemical and inflammatory consequences of beta-amyloid-induced tau protein hyperactivity, possibly the most important underlying cause of AD.

Furthermore, plant and synthetic cannabinoids, and particularly the non-psychotropic cannabidiol, might also exert other, non-cannabinoid receptor-mediated protective effects, including, but not limited to, anti-oxidant actions. There is evidence, from in vivo studies on beta-amyloid-induced neurotoxicity, also for a possible causative role of endocannabinoids in the impairment in memory retention, which is typical of AD.

 This might open the way to the use of cannabinoid receptor antagonists as therapeutic drugs for the treatment of cognitive deficits in the more advanced phases of this disorder. The scant, but nevertheless important literature on the regulation and role of the endocannabinoid system in AD, and on the potential treatment of this disorder with cannabinoids and endocannabinoid-based drugs, are discussed in this mini-review.”

http://www.ncbi.nlm.nih.gov/pubmed/18781980

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous