Medical cannabis associated with decreased opiate medication use in retrospective cross-sectional survey of chronic pain patients.

“Opioids are commonly used to treat patients with chronic pain (CP), though there is little evidence that they are effective for long term CP treatment.

Previous studies reported strong associations between passage of medical cannabis laws and decrease in opioid overdose statewide.

Our aim was to examine whether using medical cannabis for CP changed individual patterns of opioid use.

Using an online questionnaire, we conducted a cross-sectional retrospective survey of 244 medical cannabis patients with CP who patronized a medical cannabis dispensary in Michigan between November 2013 and February 2015. Data collected included demographic information, changes in opioid use, quality of life, medication classes used, and medication side effects before and after initiation of cannabis usage.

Among study participants, medical cannabis use was associated with a 64% decrease in opioid use (n=118), decreased number and side effects of medications, and an improved quality of life (45%).

This study suggests that many CP patients are essentially substituting medical cannabis for opioids and other medications for CP treatment, and finding the benefit and side effect profile of cannabis to be greater than these other classes of medications.

This article suggests that using medical cannabis for CP treatment may benefit for some CP patients. The reported improvement in quality of life, better side effect profile, and decreased opioid use should be confirmed by rigorous, longitudinal studies that also assess how CP patients use medical cannabis for pain management.”

http://www.ncbi.nlm.nih.gov/pubmed/27001005

Cannabis in Pain Treatment: Clinical & Research Considerations.

“Cannabinoids show promise as therapeutic agents, particularly as analgesics, but their development and clinical use has been complicated by recognition of their botanical source, cannabis, as a substance of misuse. While research into endogenous cannabinoid systems and potential cannabinoid pharmaceuticals is slowly increasing, there has been intense societal interest in making herbal (plant) cannabis available for medicinal use; 23 U.S. States and all Canadian provinces currently permit use in some clinical contexts. Whether or not individual professionals support the clinical use of herbal cannabis, all clinicians will encounter patients who elect to use it and therefore need to be prepared to advise them on cannabis-related clinical issues despite limited evidence to guide care. Expanded research on cannabis is needed both to better determine the individual and public health effects of increasing use of herbal cannabis and to advance understanding of the pharmaceutical potential of cannabinoids as medications. This paper reviews clinical, research and policy issues related to herbal cannabis in order to support clinicians in thoughtfully advising and caring for patients who use cannabis and it examines obstacles and opportunities to expand research on the health effects of herbal cannabis and cannabinoids.

PERSPECTIVE:

Herbal cannabis is increasingly available for clinical use in the U.S despite continuing controversies over its efficacy and safety. This paper explores important considerations in the use of plant Cannabis to better prepare clinicians to care for patients who use it and to identify needed directions for research.”

http://www.ncbi.nlm.nih.gov/pubmed/26961090

The Effect of Medicinal Cannabis on Pain and Quality of Life Outcomes in Chronic Pain: A Prospective Open-label Study.

“The objective of this prospective, open-label study was to determine the long-term effect of medicinal cannabis treatment on pain and functional outcomes in subjects with treatment-resistant chronic pain.

The treatment of chronic pain with medicinal cannabis in this open-label, prospective cohort resulted in improved pain and functional outcomes, and significant reduction in opioid use.

The results suggest long-term benefit of cannabis treatment in this group of patients…”

http://www.ncbi.nlm.nih.gov/pubmed/26889611

http://www.thctotalhealthcare.com/category/pain-2/

Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain.

“We report the discovery of compound 4a, a potent β-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity.

Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol, and behaves as cannabinoid (CB1/CB2) receptor indirect agonist.

Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin.

Given these evidences, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/26888301

Up-regulation of immunomodulatory effects of mouse bone-marrow derived mesenchymal stem cells by tetrahydrocannabinol pre-treatment involving cannabinoid receptor CB2.

“Chronic pain is commonly and closely correlated with inflammation.

Both cannabinoid signaling and mesenchymal stem cells (MSCs) have been demonstrated to reduce inflammatory pain.

Although cannabinoid signaling is essential for mesenchymal stem cell survival and differentiation, little is known about its role in modulatory effect of MSCs on inflammation and pain sensitivity. Here we showed that mouse bone-marrow derived MSCs (BM-MSCs) expressed both cannabinoid receptor type 1 and 2 (CB1 and CB2). CB2 expression level in BM-MSCs increased with their maturation.

In addition, we found that tetrahydrocannabinol (THC) activated CB2 receptor and ERK signaling, consequently enhancing the modulation of MSCs on inflammation-associated cytokine release from lipopolysaccharides-stimulated microglia.

Consistent with in vitro data, THC pretreatment enhanced the immunomodulatory effects of BM-MSC on thermal hyperalgesia and mechanical allodynia in chronic constriction injury model, by decreasing the release of pro-inflammation cytokines.

Our study revealed the crucial role of THC in promoting the immunomodulatory effects of MSCs and proposed a new strategy to alleviate pain based on stem cells therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26824325

Cannabinoids in the management of chronic pain: a front line clinical perspective.

“Chronic pain is an escalating public health problem. Currently available treatments are inadequate to control chronic pain conditions, and there is a critical need for novel treatments.

Over a half century of elegant preclinical research has identified the presence of a sophisticated endocannabinoid system that is part of our natural pain and immune defense network.

Convergent work has supported the significant potential to exploit this system to decrease pain and inflammation.

Although the clinical research remains in its infancy, recent systematic reviews have found that 25 of 30 randomized controlled trials have demonstrated a significant analgesic effect.

The authors concluded that cannabinoids currently available for clinical use demonstrate a modest analgesic effect and are safe for the management of chronic pain.

There is a critical need for more translational research so that the excellent work of Dr. Itai Bab and our basic science colleagues around the world can move forward in providing novel cannabinoid-based medicines.

This should include more potent analgesics that are limited in side effects with several routes of delivery. Our patients deserve additional agents for pain control with a novel mechanism of action, and cannabinoids are the new frontier.”

http://www.ncbi.nlm.nih.gov/pubmed/26581068

Medical Cannabis Effective for Chronic Pain, Other Indications

According to this study:

* Moderate-quality evidence supports the use of cannabinoids for the treatment of chronic pain and for the spasticity related to multiple sclerosis.

* Low-quality evidence suggests that cannabinoids may be effective for chemotherapy-induced nausea and vomiting and other indications.”

http://journals.lww.com/ajnonline/Abstract/2015/10000/Medical_Cannabis_Effective_for_Chronic_Pain,_Other.31.aspx

https://www.researchgate.net/publication/282153137_Medical_Cannabis_Effective_for_Chronic_Pain_Other_Indications

“Medical Cannabis Effective for Chronic Pain, Other Indications. According to this study.” http://www.ncbi.nlm.nih.gov/pubmed/26402288

“Cannabinoids for Medical Use: A Systematic Review and Meta-analysis”  http://jama.jamanetwork.com/article.aspx?articleid=2338251

Medical Marijuana and Chronic Pain: a Review of Basic Science and Clinical Evidence.

“Cannabinoid compounds include phytocannabinoids, endocannabinoids, and synthetics.

The two primary phytocannabinoids are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), with CB1 receptors in the brain and peripheral tissue and CB2 receptors in the immune and hematopoietic systems.

The route of delivery of cannabis is important as the bioavailability and metabolism are very different for smoking versus oral/sublingual routes.

Gold standard clinical trials are limited; however, some studies have thus far shown evidence to support the use of cannabinoids for some cancer, neuropathic, spasticity, acute pain, and chronic pain conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/26325482

[Clinical pharmacology of medical cannabinoids in chronic pain].

“In Switzerland, medical cannabinoids can be prescribed under compassionate use after special authorization in justified indications such as refractory pain. Evidence of efficacy in pain is limited and the clinical benefit seems to be modest. Their drug-drug interactions (DDI) profile is poorly documented. Cytochromes P450 (CYP) 2C9 and 3A4 are involved in the metabolism of tetrahydrocannabinol and cannabidiol, which implies possible DDI with CYP450 inhibitor and inducer, such as anticonvulsivants and HIV protease inhibitors, which may be prescribed in patients with neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/26267945

Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists.

“Sustained administration of cannabinoid agonists acting on neuronal CB1 receptors (CB1Rs) are proposed for treating spasticity and chronic pain…

Our data suggest that CB1Rs may control the circuit gateway regulating the inflow of sensory afferent inputs into the locomotor circuits, indicating a potential site of action for restricting peripheral signals disruptive for locomotor activity.”