“In recent years, cannabinoids (the active components of Cannabis sativa) and their derivatives have received considerable interest due to findings that they can affect the viability and invasiveness of a variety of different cancer cells. Moreover, in addition to their inhibitory effects on tumor growth and migration, angiogenesis and metastasis, the ability of these compounds to induce different pathways of cell death has been highlighted. Here, we review the most recent results generating interest in the field of death mechanisms induced by cannabinoids in cancer cells. In particular, we analyze the pathways triggered by cannabinoids to induce apoptosis or autophagy and investigate the interplay between the two processes. Overall, the results reported here suggest that the exploration of molecular mechanisms induced by cannabinoids in cancer cells can contribute to the development of safe and effective treatments in cancer therapy.”
Category Archives: Gliomas
The endocannabinoid system in the cancer therapy: an overview.
“The endocannabinoid system comprises the cannabinoid receptors type 1 (CB1) and type 2 (CB2), their endogenous ligands (endocannabinoids), and the proteins responsible for their biosynthesis and degradation. This ubiquitous signalling system, that has attracted a great deal of scientist interest in the past 15 years, regulates several physiological and pathological functions. In mammals, among other functions, the endocannabinoid is involved in nervous, cardiovascular, metabolic, reproductive and immune functions. Finally, yet importantly, endocannabinoids are known to exert important antiproliferative actions in a great number of tumor cells including breast, brain, skin, thyroid, prostate and colorectal. The following review describes our current knowledge on the effects of two of the most studied endocannabinoids (AEA and 2-AG) on various types of tumor and summarizes the possible mechanism of observed antitumor effects.” http://www.ncbi.nlm.nih.gov/pubmed/21428888
The endocannabinoid system and cancer: therapeutic implication
“The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others).
The main active ingredient of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), produces its effects through activation of CB(1) and CB(2) receptors. CB(1) receptors are expressed at high levels in the central nervous system (CNS), whereas CB(2) receptors are concentrated predominantly, although not exclusively, in cells of the immune system.
Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer.
This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed.
Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients.
Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted.” http://www.ncbi.nlm.nih.gov/pubmed/21410463
“The available literature suggests that the endocannabinoid system may be targeted to suppress the evolution and progression of breast, prostate and bone cancer as well as the accompanying pain syndromes. Many in vitro and in vivo studies have shown that cannabinoids are efficacious in reducing cancer progression (i.e. inhibition of tumour growth and metastases as well as induction of apoptosis and other anti-cancer properties) in breast, prostate and bone cancer. Although this review focuses on these three types of cancer, activation of the endocannabinoid signalling system produces anti-cancer effects in other types of cancer.” http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2011.01327.x/full
Cannabinoids and cancer.
“Marijuana has been used in medicine for millennia, but it was not until 1964 that delta9-tetrahydrocannabinol (delta9-THC), its major psychoactive component, was isolated in pure form and its structure was elucidated. Shortly thereafter it was synthesized and became readily available. However, it took another decade until the first report on its antineoplastic activity appeared. In 1975, Munson discovered that cannabinoids suppress Lewis lung carcinoma cell growth. The mechanism of this action was shown to be inhibition of DNA synthesis. Antiproliferative action on some other cancer cells was also found. In spite of the promising results from these early studies, further investigations in this area were not reported until a few years ago, when almost simultaneously two groups initiated research on the antiproliferative effects of cannabinoids on cancer cells: Di Marzo’s group found that cannabinoids inhibit breast cancer cell proliferation, and Guzman’s group found that cannabinoids inhibit the growth of C6 glioma cell. Other groups also started work in this field, and today, a wide array of cancer cell lines that are affected is known, and some mechanisms involved have been elucidated.”
THC From Cannabis Destroys Cancer Cells
“The study results strongly suggest that if taken regularly, cannabis oil may be able to induce remission in leukemia patients without the horrendous side effects typically associated with standard radio-chemical treatment options. Although this is only one such study, other similar studies have shown equally impressive results.
Many of the active ingredients found in cannabis-derived drugs show exceptional promise in treating some of the greatest hurdles facing modern medical science. In addition to their aforementioned capacity for safely treating certain forms of deadly cancer, they also show great promise in alleviating autoimmune conditions such as rheumatoid arthritis, multiple sclerosis, and even inflammatory bowel disease. A growing number of experts also note their possible viability treating a range of neurological disorders including Alzheimer’s and Lou Gehrig’s disease.”
http://www.globalhealingcenter.com/natural-health/thc-from-cannabis-destroys-cancer-cells/
Cannabinoid receptor 1 is a potential drug target for treatment of translocation-positive rhabdomyosarcoma
“Because cannabinoid receptor agonists are capable of reducing proliferation and inducing apoptosis (cell death) in diverse cancer cells such as glioma, breast cancer, and melanoma, we evaluated whether CB1 is a potential drug target in rhabdomyosarcoma.
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children…
Our study shows that treatment with the cannabinoid receptor agonists HU210 (cloned THC from Hebrew University) and Delta(9)-tetrahydrocannabinol (THC from cannabis) lowers the viability of translocation-positive rhabdomyosarcoma cells through the induction of apoptosis…
These results support the notion that cannabinoid receptor agonists could represent a novel targeted approach for treatment of translocation-positive rhabdomyosarcoma.”
Full text: http://mct.aacrjournals.org/content/8/7/1838.long
A comparative study on cannabidiol-induced apoptosis in murine thymocytes and EL-4 thymoma cells
“It has been shown that leukemia and glioma cells are sensitive to cannabidiol (CBD)-induced apoptosis (programmed cell death)….the cellular events and sensitivity to CBD-induced apoptosis between murine thymocytes and EL-4 thymoma cells were compared. Cannabidiol markedly induced apoptosis in a time- and concentration-related manner in both cells… The results demonstrated that both thymocytes and EL-4 thymoma cells were susceptible to CBD-induced apoptosis…”
Cannabidiol-induced apoptosis in primary lymphocytes is associated with oxidative stress-dependent activation of caspase-8
“Cannabidiol-induced apoptosis in primary lymphocytes is associated with oxidative stress-dependent activation of caspase-8” and “The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells… we have shown that the non-psychoactive cannabinoid compound cannabidiol (CBD) induces apoptosis (cell death) of glioma cells in vitro and tumor regression…”
Cannabis and tobacco smoke are not equally carcinogenic
“Cannabis and tobacco smoke are not equally carcinogenic… Cannabis smoke contains cannabinoids whereas tobacco smoke contains nicotine (plus added carcinogens). Available scientific data, that examines the carcinogenic properties of inhaling smoke and its biological consequences, suggests reasons why tobacco smoke, but not cannabis smoke, may result in lung cancer… Furthermore, compounds found in cannabis have been shown to kill numerous cancer types including: lung cancer, breast and prostate, leukemia and lymphoma, glioma, skin cancer, and pheochromocytoma…”-
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1277837/?tool=pubmed
Anti-tumoral Action of Cannabinoids
“Delta9-Tetrahydrocannabinol, the main active component of marijuana… Here, we show that intratumoral administration of Delta9-tetrahydrocannabinol…
”Remarkably, cannabinoids kill glioma cells selectively and can protect non-transformed glial cells from death…”