Clinical Endocannabinoid Deficiency Reconsidered: Current Research Supports the Theory in Migraine, Fibromyalgia, Irritable Bowel, and Other Treatment-Resistant Syndromes

Image result for cannabis and cannabinoid research

“Medicine continues to struggle in its approaches to numerous common subjective pain syndromes that lack objective signs and remain treatment resistant. Foremost among these are migraine, fibromyalgia, and irritable bowel syndrome, disorders that may overlap in their affected populations and whose sufferers have all endured the stigma of a psychosomatic label, as well as the failure of endless pharmacotherapeutic interventions with substandard benefit. The commonality in symptomatology in these conditions displaying hyperalgesia and central sensitization with possible common underlying pathophysiology suggests that a clinical endocannabinoid deficiency might characterize their origin. Its base hypothesis is that all humans have an underlying endocannabinoid tone that is a reflection of levels of the endocannabinoids, anandamide (arachidonylethanolamide), and 2-arachidonoylglycerol, their production, metabolism, and the relative abundance and state of cannabinoid receptors. Its theory is that in certain conditions, whether congenital or acquired, endocannabinoid tone becomes deficient and productive of pathophysiological syndromes. When first proposed in 2001 and subsequently, this theory was based on genetic overlap and comorbidity, patterns of symptomatology that could be mediated by the endocannabinoid system (ECS), and the fact that exogenous cannabinoid treatment frequently provided symptomatic benefit. However, objective proof and formal clinical trial data were lacking. Currently, however, statistically significant differences in cerebrospinal fluid anandamide levels have been documented in migraineurs, and advanced imaging studies have demonstrated ECS hypofunction in post-traumatic stress disorder. Additional studies have provided a firmer foundation for the theory, while clinical data have also produced evidence for decreased pain, improved sleep, and other benefits to cannabinoid treatment and adjunctive lifestyle approaches affecting the ECS.

Various strategies to treat CED conditions are possible. A direct approach with CB1 agonists must recognize the fact that the ECS operates as a homeostatic regulator that sometimes requires a gentle pharmacological nudge, rather than a forceful shove, by synthetic full agonists. Thus, small doses of a weak partial agonist (e.g., THC) should be considered, which would not induce tolerance and may jump-start the ECS. Even THC alone is poorly tolerated or appreciated by patients,98 and standardized whole cannabis extracts that contain additional synergistic and buffering components, such as CBD and cannabis terpenoids, are certainly preferable.93 Alternatively, FAAH inhibitors will also raise AEA levels, but only CBD among them has achieved current legal commercial market availability. Pharmaceutical approaches affecting endocannabinoid transport or its genetic regulation would also hold promise. Beyond drug interventions, a growing body of knowledge supports the realistic goal that lifestyle approaches should be integral to the treatment of CED; specifically, low-impact aerobic regimens have demonstrated beneficial effects on endocannabinoid function,99 and as discussed above, dietary manipulations with probiotics and prebiotics may ameliorate not only IBS symptoms but also the entire spectrum of CED conditions. Ultimately, multimodality approaches are most likely to be fruitful in treatment of these common yet difficult clinical challenges.

http://online.liebertpub.com/doi/pdf/10.1089/can.2016.0009

Gut-brain axis: Role of lipids in the regulation of inflammation, pain and CNS diseases.

Image result for Curr Med Chem

“The human gut is a composite anaerobic environment with a large, diverse and dynamic enteric microbiota, represented by more than 100 trillion microorganisms, including at least 1000 distinct species. The discovery that a different microbial composition can influence behavior and cognition, and in turn the nervous system can indirectly influence enteric microbiota composition, has significantly contributed to establish the well-accepted concept of gut-brain axis.

This hypothesis is supported by several evidence showing mutual mechanisms, which involve the vague nerve, the immune system, the hypothalamic-pituitary-adrenal (HPA) axis modulation and the bacteria-derived metabolites. Many studies have focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome (IBS) to neurodevelopmental disorders, such as autism, and to neurodegenerative diseases, such as Parkinson Disease, Alzheimer Disease etc.

Based on this background, and considering the relevance of alteration of the symbiotic state between host and microbiota, this review focuses on the role and the involvement of bioactive lipids, such as the N-acylethanolamine (NAE) family whose main members are N-arachidonoylethanolamine (AEA), palmitoylethanolamide (PEA) and oleoilethanolamide (OEA), and short chain fatty acids (SCFAs), such as butyrate, belonging to a large group of bioactive lipids able to modulate peripheral and central pathologic processes.

It is well established their effective role in inflammation, acute and chronic pain, obesity and central nervous system diseases. It has been shown a possible correlation between these lipids and gut microbiota through different mechanisms.

Indeed, systemic administration of specific bacteria can reduce abdominal pain through the involvement of cannabinoid receptor 1 in rat; on the other hand, PEA reduces inflammation markers in a murine model of inflammatory bowel disease (IBD), and butyrate, producted by gut microbiota, is effective in reducing inflammation and pain in irritable bowel syndrome and IBD animal models.

In this review, we underline the relationship among inflammation, pain, microbiota and the different lipids, focusing on a possible involvement of NAEs and SCFAs in the gut-brain axis and their role in central nervous system diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/28215162

The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease

Image result for Neurogastroenterol Motil.

“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract.

Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors.

After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS.

The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/27561826

Role of cannabis in digestive disorders.

Image result for European Journal of Gastroenterology & Hepatology

“Cannabis sativa, a subspecies of the Cannabis plant, contains aromatic hydrocarbon compounds called cannabinoids.

Tetrahydrocannabinol is the most abundant cannabinoid and is the main psychotropic constituent.

Cannabinoids activate two types of G-protein-coupled cannabinoid receptors: cannabinoid type 1 receptor and cannabinoid type 2 receptor.

There has been ongoing interest and development in research to explore the therapeutic potential of cannabis. Tetrahydrocannabinol exerts biological functions on the gastrointestinal (GI) tract.

Cannabis has been used for the treatment of GI disorders such as abdominal pain and diarrhea.

The endocannabinoid system (i.e. endogenous circulating cannabinoids) performs protective activities in the GI tract and presents a promising therapeutic target against various GI conditions such as inflammatory bowel disease (especially Crohn’s disease), irritable bowel syndrome, and secretion and motility-related disorders.

The present review sheds light on the role of cannabis in the gut, liver, and pancreas and also on other GI symptoms, such as nausea and vomiting, cannabinoid hyperemesis syndrome, anorexia, weight loss, and chronic abdominal pain.

Although the current literature supports the use of marijuana for the treatment of digestive disorders, the clinical efficacy of cannabis and its constituents for various GI disorders remains unclear.”

https://www.ncbi.nlm.nih.gov/pubmed/27792038

Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

Image result for plos one logo

“Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear.

In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome.

We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.”

http://www.ncbi.nlm.nih.gov/pubmed/27611972

The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease.

Image result for Neurogastroenterol Motil

“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract.

Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors.

After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS.

Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity.

In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer.

PURPOSE:

The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27561826

Getting into the weed: the role of the endocannabinoid system in the brain-gut axis.

“The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system.

The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid receptors CB1 and CB2.

The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility.

Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation.

We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain.

The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions-notably the prefrontal cortex, amygdala, and hypothalamus.

Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/27133395

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Endocannabinoids and the Digestive Tract and Bladder in Health and Disease.

“Components of the so-called endocannabinoid system, i.e., cannabinoid receptors, endocannabinoids, as well as enzymes involved in endocannabinoid synthesis and degradation, have been identified both in the gastrointestinal and in the urinary tract.

Evidence suggests that the endocannabinoid system is implicated in many gastrointestinal and urinary physiological and pathophysiological processes, including epithelial cell growth, inflammation, analgesia, and motor function.

A pharmacological modulation of the endocannabinoid system might be beneficial for widespread diseases such as gastrointestinal reflux disease, irritable bowel syndrome, inflammatory bowel disease, colon cancer, cystitis, and hyperactive bladder.

Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids, non-psychotropic cannabinoids (notably cannabidiol), and palmitoylethanolamide, an acylethanolamide co-released with the endocannabinoid anandamide, are promising candidates for gastrointestinal and urinary diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/26408170

[Cannabis – therapy for the future?]

“Despite all the progress achieved in the treatment of chronic gastrointestinal diseases, in some patients the treatment does not reach long-term optimum effectiveness. Therefore a number of patients have turned to complementary and alternative medicine (CAM).

Of the different types of CAM patients with GIT diseases tend to prefer in particular homeopathy, acupuncture and not least phytotherapy, where therapeutic use of cannabis may also be included.

The pathophysiological basis of therapeutic effect of curative cannabis has not been fully clarified so far.

Many scientists in many fields of medicine and pharmacology have been engaged in the study of effects of cannabinoids on the body since the beginning of the 20th century with the interest significantly increasing in the 1980s.

The discovery of CB receptors (1988) and endogenous molecules which activate these receptors (1992) led to the discovery of the endocannabinoid system.

Pharmacological modulation of the endogenous cannabinoid system offers new therapeutic possibilities of treatment of many illnesses and symptoms including the GIT disorders, including of nausea, vomiting, cachexia, IBS, Crohns disease and some other disorders.

Cannabinoids are attractive due to their therapeutic potential – they affect a lot of symptoms with minimum side effects.

Experience of patients with GIT disorders show that the use of cannabis is effective and helps in cases where the standard therapy fails.”

http://www.ncbi.nlm.nih.gov/pubmed/26375695