Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications.

“Much progress has been achieved in cannabinoid research. A major breakthrough in marijuana-cannabinoid research has been the discovery of a previously unknown but elaborate endogenous endocannabinoid system (ECS), complete with endocannabinoids and enzymes for their biosynthesis and degradation with genes encoding two distinct cannabinoid (CB1 and CB2) receptors (CBRs) that are activated by endocannabinoids, cannabinoids, and marijuana use.

Physical and genetic localization of the CBR genes CNR1 and CNR2 have been mapped to chromosome 6 and 1, respectively. A number of variations in CBR genes have been associated with human disorders including osteoporosis, attention deficit hyperactivity disorder (ADHD), posttraumatic stress disorder (PTSD), drug dependency, obesity, and depression. Other family of lipid receptors including vanilloid (VR1) and lysophosphatidic acid (LPA) receptors appear to be related to the CBRs at the phylogenetic level. The ubiquitous abundance and differential distribution of the ECS in the human body and brain along with the coupling to many signal transduction pathways may explain the effects in most biological system and the myriad behavioral effects associated with smoking marijuana. The neuropharmacological and neuroprotective features of phytocannabinoids and endocannabinoid associated neurogenesis have revealed roles for the use of cannabinoids in neurodegenerative pathologies with less neurotoxicity. The remarkable progress in understanding the biological actions of marijuana and cannabinoids have provided much richer results than previously appreciated cannabinoid genomics and raised a number of critical issues on the molecular mechanisms of cannabinoid induced behavioral and biochemical alterations. These advances will allow specific therapeutic targeting of the different components of the ECS in health and disease.

 This review focuses on these recent advances in cannabinoid genomics and the surprising new fundamental roles that the ECS plays in the retrograde signaling associated with cannabinoid inhibition of neurotransmitter release to the genetic basis of the effects of marijuana use and pharmacotherpeutic applications and limitations. Much evidence is provided for the complex CNR1 and CNR2 gene structures and their associated regulatory elements. Thus, understanding the ECS in the human body and brain will contribute to elucidating this natural regulatory mechanism in health and disease.”

http://www.ncbi.nlm.nih.gov/pubmed/19897083

Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity

Background

“The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss.”

“The discovery of the endocannabinoid system (ECS) and of its impact on the regulation of energy homeostasis represents a significant advance in the study of obesity and type 2 diabetes [1][4].”

“The saliva is the first digestive secretion produced in response to the ingestion of food [11]. Therefore, it is reasonable to investigate whether signals and systems involved in the regulation of food intake, such as the ECS, might be present in saliva and exert a functional role. Besides, saliva offers distinctive advantages over serum or plasma as a diagnostic tool, thanks to the non-invasiveness of the collection procedure.”

“The ECS is present in human salivary glands.”

“Changes in salivary endocannabinoids and N-acylethanolamines levels in response to body weight loss.”

“Here we demonstrate that endocannabinoids and related N-acylethanolamines can be reliably detected and quantified in human saliva. Similarly to what already reported for circulating levels in the blood [7], [9], [10], the salivary concentration of AEA and OEA were significantly increased in obese, insulin-resistant subjects as compared to normal weight controls.”

“the present findings overall indicate that salivary AEA might be a useful biomarker in human obesity, in particular considering that salivary samples are easy to collect, require a non-invasive procedure advantageous when performing studies in obese subjects in whom venipuncture may be difficult, and can be repeatedly collected at home by the patient during a therapeutic intervention. This type of tool could therefore be used to better phenotype the obese population, assess responses to treatment, or to further study the physiology of the ECS in humans, by investigating salivary endocannabinoid responses under various conditions.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3409167/

Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis.

Abstract

“Energy balance is controlled by centres of the brain which receive important inputs from the gastrointestinal tract, liver, pancreas, adipose tissue and skeletal muscle, mediated by many different signalling molecules. Obesity occurs when control of energy intake is not matched by the degree of energy expenditure. Obesity is not only a state of disordered energy balance it is also characterized by systemic inflammation. Systemic inflammation is triggered by the leakage of bacterial lipopolysaccharide through changes in intestinal permeability. The endocannabinoid system, consisting of the cannabinoid receptors, endogenous cannabinoid ligands and their biosynthetic and degradative enzymes, plays vital roles in the control of energy balance, the control of intestinal permeability and immunity. In this review we will discuss how the endocannabinoid system, intestinal microbiota and the brain-gut axis are involved in the regulation of energy balance and the development of obesity-associated systemic inflammation. Through direct and indirect actions throughout the body, the endocannabinoid system controls the development of obesity and its inflammatory complications.”

http://www.ncbi.nlm.nih.gov/pubmed/22269477

The endocannabinoid system : a new target for the regulation of energy balance and metabolism.

Abstract

“Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated metabolic abnormalities which increase the risk of cardiovascular disease and type 2 diabetes. Animal studies had shown that stimulation of the cannabinoid CB1 receptor with endocannaboids such as anandamide could induce first an increase in food intake leading to body weight gain. Furthermore, an exciting development in this field has been the discovery of CB1 receptors in many peripheral tissues, including key organs involved in carbohydrate and lipid metabolism such as the adipose tissue and liver. Thus, blocking CB1 receptors located in the liver and adipose tissue could have an additional impact on the metabolic risk profile beyond what could be explained by the reduction in food intake and the related body weight loss. Preclinical studies have shown that rimonabant, the first CB1-receptor blocker to be available in clinical practice, could not only induce a reduction in food intake, but could also produce body weight loss beyond what could be explained by its effect on food intake. Thus, the evidence from preclinical studies have suggested that CB1 blockade could represent a relevant approach to reduce food intake, to induce body weight loss, and, most importantly, to “fix” the dysmetabolic state of viscerally obese patients at increased cardiometabolic risk.”

http://www.ncbi.nlm.nih.gov/pubmed/17667864

[Endocannabinoid system and energy metabolism: physiology and pathophysiology].

Abstract

“The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system has recently been shown to control several metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, therefore drugs interfering with this overactivation by blocking CB1 receptor are considered as valuable candidates for the treatment of obesity and related cardiometabolic risk factors.”

http://www.ncbi.nlm.nih.gov/pubmed/18773754

The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?

Abstract

“The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. This mini-review summarizes the main findings that supported the clinical use of CB1 antagonists/inverse agonists, the clinical concerns that have emerged, and the possible future of cannabinoid-based therapy of obesity and related diseases. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes, liver, skeletal muscle and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways. Obese people seem to display an increased endocannabinoid tone, driving CB(1) receptor in a feed-forward dysfunction. Several CB(1) antagonists/inverse agonists have been developed for the treatment of obesity. Although these drugs were found to be efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors, they resulted in adverse psychiatric effects that limited their use and finally led to the end of the clinical use of systemic CB(1) ligands with significant inverse agonist activity for complicated obesity. However, the existence of alternatives such as CB(1) partial agonists, neutral antagonists, antagonists restricted to the periphery, allosteric modulators and other potential targets within the ECS indicate that a cannabinoid-based therapy for the management of obesity and its associated cardiometabolic sequelae should remain open for consideration.”

http://www.ncbi.nlm.nih.gov/pubmed/20347862

Cannabinoid receptors as therapeutic targets for obesity and metabolic diseases.

Abstract

“One of the most interesting pharmacological targets proposed in the past ten years for fighting obesity and related metabolic disorders is the endocannabinoid system. The role of the endocannabinoid system is crucial in regulating the rewarding properties of food, in controlling energy balance by acting at the hypothalamic circuitries involved in food intake, and in peripheral metabolism by influencing adipocytes, hepatocytes, myocytes and pancreatic endocrine cells. Obesity seems to be a condition associated with a pathological overactivation of the endocannabinoid system; therefore, restoring a normal endocannabinoid tone by antagonizing the cannabinoid receptor type 1 (CB(1)) could help arrest both the development and the maintenance of obesity.”

http://www.ncbi.nlm.nih.gov/pubmed/17027338

How many sites of action for endocannabinoids to control energy metabolism?

Abstract

“The promising results obtained by clinical trials using Rimonabant to tackle visceral obesity and related disorders recently promoted a remarkable impulse to carry out detailed investigations into the mechanisms of action of endocannabinoids in regulating food intake and energy metabolism. The endocannabinoid system has been known for many years to play an important role in the modulation of the neuronal pathways mediating the rewarding properties of food. However, in the last few years, with the advanced understanding of the crucial role of the hypothalamic neuronal network in the regulation of appetite, several studies have also directed attention to the orexigenic role of the endocannabinoid system, substantiating the well known appetite stimulating properties of derivatives of Cannabis sativa. Furthermore, the last 2 years have seen a number of relevant publications emphasizing the role of endocannabinoids as significant players in various peripheral metabolic processes. To date, the roles of the endocannabinoid system in influencing energy metabolism have proved to be more complex than was formerly believed. However, the diverse ability to modulate both central and peripheral processes highlights the pivotal involvement of the endocannabinoid system in the control of metabolic processes. This review describes the roles of endocannabinoids and the cannabinoid type 1 receptor (CB1) in the control of energy balance.”

http://www.ncbi.nlm.nih.gov/pubmed/16570104

Contribution of CB1 blockade to the management of high-risk abdominal obesity.

Abstract

“The worldwide increase in the prevalence of type 2 diabetes represents a tremendous challenge for our healthcare system, especially if we consider that this phenomenon is largely explained by the epidemic of obesity. However, despite the well-recognized increased morbidity and mortality associated with an elevated body weight, there is now more and more evidence highlighting that abdominal adipose tissue is the fat depot that conveys the greatest risk of metabolic complications. This cluster of metabolic abnormalities has been referred to as the metabolic syndrome and this condition is largely the consequence of abdominal obesity, especially when accompanied by a high accumulation of visceral adipose tissue. This cluster of metabolic complications has also been found to be predictive of a substantially increased risk of coronary heart disease beyond the presence of traditional risk factors. Moreover, a moderate weight loss in initially abdominally obese patients is associated with a selective mobilization of visceral adipose tissue, leading to improvements in the metabolic risk profile predictive of a reduced risk of coronary heart disease and of type 2 diabetes. The recent discovery of the endocannabinoid-CB1 receptor system and of its impact on the regulation of energy metabolism represents a significant advance, which will help physicians target abdominal obesity and its related metabolic complications. In this regard, studies have shown that rimonabant therapy (the first developed CB1 blocker) could be useful for the management of clustering cardiovascular disease risk factors in high-risk abdominally obese patients through its effects not only on energy balance but also on adipose tissue metabolism. For instance, the presence of CB1 receptors in adipose tissue and the recently reported effect of rimonabant on adiponectin production by adipose cells may represent a key factor responsible for the weight loss-independent effect of this CB1 blocker on cardiometabolic risk variables.”

http://www.ncbi.nlm.nih.gov/pubmed/16570106

Expression of the cannabinoid system in muscle: effects of a high-fat diet and CB1 receptor blockade

Abstract

“The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) β and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of C1 receptors could work towards restoration of the metabolic adaption imposed by diet.”

“In the present study, we focused on skeletal muscles, which are an important tissue for glucose and fat oxidation, being an important site for insulin action [27]. However, despite the fact that AEA can modify the pathways regulating fatty acid oxidation in the skeletal muscle, probably via CB1 receptors, suggesting that CB1 receptor antagonism would have an important role in oxidative metabolism and energy regulation [28,29], there is still a general lack of clarity regarding the physiological functions and molecular mechanism implicated. In fact, there are almost no studies demonstrating the presence of endocannabinoid signalling proteins and their sensitivity to HFDs (high-fat diets). Therefore, in the present study, we have (i) investigated the presence of the endocannabinoid signalling machinery in skeletal muscle, (ii) analysed the impact of an HFD on lipid and glucose metabolism and endocannabinoid-related genes, and (iii) monitored the effects of the CB1 receptor inverse agonist AM251 during an STD (standard/low-fat diet) and HFD on the endocannabinoid machinery and the genes related to lipid oxidative metabolism in skeletal muscle of rats. Among the many molecules involved in lipid metabolism of skeletal muscle, we evaluated changes in the gene and protein expression of relevant components of the ECS, such as the CB1 and CB2 receptors and some of the enzymes responsible for their synthesis.

The presence of the ECS in skeletal muscle

As a final note, the regulatory mechanisms may be different at rest and during exercise, may change as the exercise intensity increases, and this could be influential in endocannabinoid production [31,49]. It would be interesting to repeat this type of experiment combining exercise and diet in its original design. Regulation of skeletal muscle fat and glucose metabolism is clearly multifactorial, and different mechanisms may dominate in different conditions; besides, potential variations may exist between individuals in response to stimulating or blocking CB1 receptors. This could cause differences in response to treatment with CB1 receptor antagonists between different obese states. In conclusion, we have provided findings identifying important relevant players involved in the signalling pathways of CB1 receptor antagonism in skeletal muscle and determined the extent of changes in this system associated with either an HFD or CB1 receptor blockade.”

http://www.biochemj.org/bj/433/0175/bj4330175.htm