Full FAAH inhibition combined with partial monoacylglycerol lipase inhibition: Augmented and sustained antinociceptive effects with negligible cannabimimetic side effects in mice.

“Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the primary hydrolytic enzymes for the respective endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonylglycerol (2-AG), produces antinociception, but with minimal cannabimimetic side effects.

Although selective inhibitors of either enzyme often show partial efficacy in various nociceptive models, their combined blockade elicits augmented antinociceptive effects, but side effects emerge. Moreover, complete and prolonged MAGL blockade leads to CB1 receptor functional tolerance, which represents another challenge in this potential therapeutic strategy.

Therefore, the present study tested whether full FAAH inhibition, combined with partial MAGL inhibition, would produce sustained antinociceptive effects with minimal cannabimimetic side effects…

Thus, full FAAH inhibition combined with partial MAGL inhibition reduces neuropathic and inflammatory pain states, with minimal cannabimimetic effects.”

Lipid nanoparticles as an emerging platform for cannabinoid delivery: physicochemical optimization and biocompatibility.

“This work aims at developing and optimizing a valuable oral delivery carrier for the cannabinoid derivative CB13, which presents a high therapeutic potential in chronic pain states that respond poorly to conventional analgesics, but also shows highly unfavorable physicochemical properties.

CB13-loaded lipid nanoparticles (LNP) formulations were developed…

The LNP formulation proposed proved to be a promising carrier for the oral delivery of CB13, a cannabinoid with high therapeutic potential in chronic pain states that currently lack a valid oral treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/25996463

[Cannabinoids in medicine].

“Cannabinoids have been known for many centuries because of their various effects in healthcare. They are primarily effective in reducing nausea, vomiting, pain, anorexia, spasticity and depression. Some other effects are known, all seem to be mediated by cannabinoid receptors in the central nervous system. In the past years, medical use has been proven in several studies. Today, the therapeutical use of cannabinoids in medicine is increasing, and access was made easier. Especially in pain-management and palliative care, they seem to be a valuable therapeutic option.”

http://www.ncbi.nlm.nih.gov/pubmed/19165445

A Dramatic Response to Inhaled Cannabis in a Woman with Central Thalamic Pain and Dystonia

“Central pain syndromes (CPS) are difficult to treat… The clinical utility of cannabinoids has been suggested on the basis of anecdotal reports and small clinical studies for a wide range of pain syndromes, including cancer pain, visceral pain, migrain, and pain associated with spasticity. We report a patient with intractable CPS who experienced dramatic relief of pain and dystonia from cannabis… Our case report illustrates improvement in control of central pain and dystonia, and discontinuation of other treatments following cannabis use, suggesting a role for cannabinoids in the management of central pain syndromes with dystonia.”

http://www.jpsmjournal.com/article/S0885-3924(02)00426-8/fulltext

http://www.thctotalhealthcare.com/category/pain-2/

Use of Prescription Pain Medications Among Medical Cannabis Patients: Comparisons of Pain Levels, Functioning, and Patterns of Alcohol and Other Drug Use.

“Management of chronic pain is one of the most common reasons given by individuals seeking medical cannabis. However, very little information exists about the concurrent use of cannabis and prescription pain medication (PPM).

This study fills this gap in knowledge by systematically comparing medical cannabis users who use or do not use PPM, with an emphasis on understanding whether concurrent use of cannabis and PPM is associated with more serious forms of alcohol and other drug involvement…

PPM users rated the efficacy of cannabis higher than PPM for pain management and indicated a strong desire to reduce PPM usage.

Use of PPM among medical cannabis users was not identified as a correlate for more serious forms of alcohol and other drug involvement.”

http://www.ncbi.nlm.nih.gov/pubmed/25978826

The Lysophosphatidylinositol Receptor GPR55 Modulates Pain Perception in the Periaqueduactal Grey.

“Emerging evidence indicates the involvement of GPR55 and its proposed endogenous ligand, lysophosphatidylinositol (LPI), in nociception…

Thus, we provide the first pharmacological evidence that GPR55 activation at central levels is pronociceptive, suggesting that interfering with GPR55 signaling in the PAG may promote analgesia.”

http://www.ncbi.nlm.nih.gov/pubmed/25972448

The cannabinoid CB₂ receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain.

European Neuropsychopharmacology Home

“The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressedcannabinoid receptor 2 (CB₂).

…the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.

Cannabis preparations, which have been used since thousands of years for the treatment of pain have recently come again into the focus as potential therapeutics for inflammatory and neuropathic pain conditions. Currently, cannabis extracts and synthetic preparations of the psychoactive cannabis compound Δ9-tetrahydrocannabinol (THC) have been approved in many countries for clinical pain management at doses and formulations that show on only minor central side effects…

A natural selective agonist for CB2 receptors is the plant volatile BCP, which represents a dietary phytocannabinoid. BCP is found in large amounts in the essential oils of many common spices and food plants… Several health effects have been attributed to BCP or medicinal plants containing BCP, including anti-inflammatory, local anesthetic, anti-carcinogenic, anti-fibrotic and anxiolytic-like activity.

In the present study, we investigated the analgesic effects of BCP in formalin-induced inflammation model and in a model of neuropathic pain, which involves the partial ligation of the sciatic nerve… BCP is the first natural CB2 receptor agonist, which could orally reduce inflammatory responses in different animal models of pain.

Thus, it is likely that BCP belongs to a group of common plant natural products with major potential impact on human health.

The oral intake of this dietary cannabinoid with vegetable food could be advantageous in the daily routine clinical practice over synthetic cannabinoid agonists.”

http://www.europeanneuropsychopharmacology.com/article/S0924-977X(13)00302-7/fulltext

http://www.thctotalhealthcare.com/category/neuropathic-pain/

Cannabinoid-mediated modulation of neuropathic pain and microglial accumulation in a model of murine type I diabetic peripheral neuropathic pain.

Logo of molpain

“Despite the frequency of diabetes mellitus and its relationship to diabetic peripheral neuropathy (DPN) and neuropathic pain (NeP), our understanding of underlying mechanisms leading to chronic pain in diabetes remains poor.

Recent evidence has demonstated a prominent role of microglial cells in neuropathic pain states.

One potential therapeutic option gaining clinical acceptance is the cannabinoids, for which cannabinoidreceptors (CB) are expressed on neurons and microglia. We studied the accumulation and activation of spinal and thalamic microglia in streptozotocin (STZ)-diabetic CD1 mice and the impact of cannabinoid receptor agonism/antagonism during the development of a chronic NeP state.

The prevention of microglial accumulation and activation in the dorsal spinal cord was associated with limited development of a neuropathic pain state.

Cannabinoids demonstrated antinociceptive effects in this mouse model of DPN.

These results suggest that such interventions may also benefit humans with DPN, and their early introduction may also modify the development of the NeP state.”  http://www.ncbi.nlm.nih.gov/pubmed/20236533

“Tetrahydrocannabinol (THC), a component in marijuana, acts at both CB1 and CB2 receptors, but other forms of cannabinoids such as cannabinol and cannabidiol act predominantly at CB2 receptors. Such CB2 agonists may be potential anti-inflammatory therapies, antagonizing the 2-AG-induced recruitment of microglia and impacting upon development of an inflammatory state. Such properties may permit the cannabinoids to act in the prevention of microglial activation, perhaps limiting the development of neuropathic pain.

The present data confirm the efficacy of cannabinoid agonists, both for the CB1 and CB2 receptor, in modulation of acute thermal and tactile hypersensitivity as features of neuropathic pain. Furthermore, CB1 agonism from the onset of the offending stimulus (diabetes) normally leading to neuropathic pain ameliorated the development of a neuropathic pain state.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845559/

http://www.thctotalhealthcare.com/category/neuropathic-pain/

 

The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia.

“The opioid and non-opioid types of stress-induced analgesia have been well defined. One of the non-opioid type involve the endocannabinoid system.

We previously reported that the spinal serotonin 7 receptor (5-HT7) blockers inhibit both morphine and cannabinoid-induced analgesia, thus we hypothesized that descending serotonergic pathways-spinal 5-HT7 receptor loop might contribute to stress-induced analgesia…

These results indicate that descending serotonergic pathways and the spinal 5-HT7 receptor loop play a crucial role in mediating both opioid and non-opioid type stress-induced analgesia.”

http://www.ncbi.nlm.nih.gov/pubmed/25917322