Study of cannabinoid receptor 2 Q63R gene polymorphism in Lebanese patients with rheumatoid arthritis.

 

“The cannabinoid (CB) receptor 2, primarily expressed in immune cells, was shown to play important immune-regulatory functions. In particular, the CB2-R63 functional variant has been shown to alter the ability of the CB2 receptor to exert its inhibitory function on T lymphocytes.

The aim of this study was to investigate the association between a common dinucleotide polymorphism, Q63R, in the cannabinoid receptor 2 gene (CNR2) and rheumatoid arthritis (RA) in the Lebanese population.

One hundred five unrelated Lebanese RA patients and one hundred five controls from different Lebanese governorates were recruited in this study. Genomic DNA was extracted, polymerase chain reaction was performed, and CNR2 was genotyped in a blinded fashion. The χ2 test was used to determine the differences in genotypes and allele frequencies. CNR2 genotyping showed significantly higher frequencies of the CB2-R63 variant (allele frequencies, P < 0.00001; genotype distribution, P < 0.00001) in RA patients when compared with healthy controls. Moreover, RR carriers had more than 10-fold risk for developing RA (OR = 10.8444, 95% CI = 5.0950-23.0818; P < 0.0001), and QR carriers had more than 3-fold risk (OR = 3.8667, 95% CI = 1.7886-8.3591; P = 0.0006) as compared with QQ carriers.

Our preliminary results suggest a role of CB2-Q63R gene polymorphism in the etiology of RA, thus supporting its potential use as a pharmacological target for selective agonists in clinical practice.”

https://www.ncbi.nlm.nih.gov/pubmed/30032418

https://link.springer.com/article/10.1007%2Fs10067-018-4217-9

Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons.

 Neuropharmacology

“Endogenous cannabinoids are diffusible lipid ligands of the main cannabinoid receptors type 1 and 2 (CB1R and CB2R). In the central nervous system endocannabinoids are produced in an activity-dependent manner and have been identified as retrograde modulators of synaptic transmission.

Additionally, some neurons display a cell-autonomous slow self-inhibition (SSI) mediated by endocannabinoids. In these neurons, repetitive action potential firing triggers the production of endocannabinoids, which induce a long-lasting hyperpolarization of the membrane potential, rendering the cells less excitable. Different endocannabinoid receptors and effector mechanisms have been described underlying SSI in different cell types and brain areas.

Here, we investigate SSI in neurons of layer 2/3 in the somatosensory cortex. High-frequency bursts of action potentials induced SSI in pyramidal cells (PC) and regular spiking non-pyramidal cells (RSNPC), but not in fast-spiking interneurons (FS). In RSNPCs the hyperpolarization was accompanied by a change in input resistance due to the activation of G protein-coupled inward-rectifying K+ (GIRK) channels. A CB2R-specific agonist induced the long-lasting hyperpolarization, whereas preincubation with a CB2R-specific inverse agonist suppressed SSI. Additionally, using cannabinoid receptor knockout mice, we found that SSI was still intact in CB1R-deficient but abolished in CB2R-deficient mice.

Taken together, we describe an additional SSI mechanism in which the activity-induced release of endocannabinoids activates GIRK channels via CB2Rs. These findings expand our knowledge about cell type-specific differential neuronal cannabinoid receptor signaling and suggest CB2R-selective compounds as potential therapeutic approaches.”

https://www.ncbi.nlm.nih.gov/pubmed/30025920

https://www.sciencedirect.com/science/article/pii/S0028390818303885?via%3Dihub

Interferon- α-mediated Activation of T Cells from Healthy and HIV-infected Individuals is Suppressed by Δ 9 -Tetrahydrocannabinol

Journal of Pharmacology and Experimental Therapeutics

“HIV patients routinely use medicinal cannabinoids to treat neuropathic pain, anxiety, and HIV-associated wasting. However, Δ 9 -Tetrahydrocannabinol (THC), the primary psychoactive cannabinoid in cannabis, suppresses T cell function and secretion of interferons, both critically important in the anti-viral immune response.

Interferon- α (IFN α), a key cytokine in T cell activation and peripheral control of HIV infection, can potentiate responsiveness to IL-7, a crucial homeostatic cytokine for peripheral T cell maintenance. . The objective of this investigation was to compare the response of T cells to stimulation by IFNα and IL-7 in T cells from healthy and HIV+ donors in the absence and presence of THC.

T cells from healthy and HIV+ donors were stimulated in vitrowith IFN α and IL-7 in the absence and presence of THC followed by measurements of signaling events through IFNAR, IFN α-induced expression of IL-7Rα, cognate signaling through IL-7R, and on IL-7-mediated T cell proliferation by flow cytometry and RT-qPCR. CD8+ T cells from HIV+ donors showed a diminished response to IFN α-induced pSTAT1 compared to CD8+ T cells from healthy donors while CD4+ T cells from HIV+ donors and healthy donors were comparable. Treatment with IFN α promoted IL-7R expression and potentiated IL-7-induced STAT5 phosphorylation to augment IL-7-mediated proliferation by T cells from healthy and HIV+ donors. Finally, HIV+ donors exhibited reduced sensitivity to THC-mediated suppression by IFN α and IL-7-mediated stimulation compared to healthy donors.

These results further support THC as immune suppressive while identifying putatively beneficial aspects of cannabinoid-based therapies in HIV+ patients.

Tetrahydrocannabinol/Cannabidiol Oromucosal Spray in Patients With Multiple Sclerosis: A Pilot Study on the Plasma Concentration-Effect Relationship.

 Image result for ovid journal

“We aimed to assess the potential relationship between intrasubject 9-tetrahydrocannabinol/cannabidiol (THC/CBD) oromucosal spray plasma profiles and clinical effects elicited by subacute dosing in chronically treated patients with multiple sclerosis (MS).

METHODS:

The study design was pilot, single center, open, and prospective. The patients were challenged with a morning test dose of 2 THC/CBD sprays at a 15-minute interval. Venous blood samples were collected before the first spray administration and every 30 minutes after the second spray, until 240 minutes postdosing. Patients rated their spasticity by the Numerical Rating Scale (NRS) simultaneously with blood drawings. Postural and motor tests were performed before the first spray and 90 and 180 minutes thereafter.

RESULTS:

Twelve patients were recruited. Peak plasma concentrations of THC/CBD largely varied among patients, from 0.60 to 13.29 ng/mL for THC and 0.55 to 11.93 ng/mL for CBD. Time to peak plasma concentrations ranged from 150 to 240 minutes for THC and 90 to 240 minutes for CBD. Patients’ NRS serial scores decreased after dosing, from a median value of 6 to 3.5 (P < 0.001). A significant inverse correlation was observed between median intrasubject repeated NRS scores and corresponding median values of both THC (P < 0.01) and CBD (P < 0.002) plasma concentrations. No significant effect of cannabinoids dosing could be appreciated according to posturographic and motor tests.

CONCLUSIONS:

Our kinetic dynamic findings from THC/CBD oromucosal spray are the first obtained in real MS patients. Although preliminary, they suggest that subacute dosing might elicit a subjective clinically significant effect on MS-related spasticity, paralleling cannabinoids measurable plasma concentrations.”

https://www.ncbi.nlm.nih.gov/pubmed/30024443

[Should ophtalmologists recommend medical cannabis to patients with glaucoma?]

 Image result for ugeskr laeger

“Cannabis has been widely used for various medical purposes since before year 2000 BC. Its effects are mediated by cannabinoids and stimulation of mainly G-protein coupled cannabinoid receptors.

In 1971, subjects who smoked marihuana, showed a decrease in the intraocular pressure.

Later investigations additionally revealed a neuroprotective effect of both ∆-9-tetrahydrocannabinol and cannabidiol (CBD).

Furthermore, CBD was found to promote neurogenesis. The aim of this review is to provide an overview of the potential use of cannabinoids in the treatment of glaucoma.”

https://www.ncbi.nlm.nih.gov/pubmed/30020072

Effectiveness of Raw, Natural Medical Cannabis Flower for Treating Insomnia under Naturalistic Conditions.

medicines-logo

“Background: We use a mobile software application (app) to measure for the first time, which fundamental characteristics of raw, natural medical Cannabis flower are associated with changes in perceived insomnia under naturalistic conditions.

Methods: Four hundred and nine people with a specified condition of insomnia completed 1056 medical cannabis administration sessions using the Releaf AppTM educational software during which they recorded real-time ratings of self-perceived insomnia severity levels prior to and following consumption, experienced side effects, and product characteristics, including combustion method, cannabis subtypes, and/or major cannabinoid contents of cannabis consumed. Within-user effects of different flower characteristics were modeled using a fixed effects panel regression approach with standard errors clustered at the user level.

Results: Releaf AppTM users showed an average symptom severity reduction of -4.5 points on a 0⁻10 point visual analogue scale (SD = 2.7, d = 2.10, p < 0.001). Use of pipes and vaporizers was associated with greater symptom relief and more positive and context-specific side effects as compared to the use of joints, while vaporization was also associated with lower negative effects. Cannabidiol (CBD) was associated with greater statistically significant symptom relief than tetrahydrocannabinol (THC), but the cannabinoid levels generally were not associated with differential side effects. Flower from C. sativa plants was associated with more negative side effects than flower from C. indica or hybrid plant subtypes.

Conclusions: Consumption of medical Cannabis flower is associated with significant improvements in perceived insomnia with differential effectiveness and side effect profiles, depending on the product characteristics.”

https://www.ncbi.nlm.nih.gov/pubmed/29997343

http://www.mdpi.com/2305-6320/5/3/75

Marijuana use and short-term outcomes in patients hospitalized for acute myocardial infarction.

 Image result for plos one

“Marijuana use is increasing worldwide, and it is ever more likely that patients presenting with acute myocardial infarctions (AMI) will be marijuana users. However, little is known about the impact of marijuana use on short-term outcomes following AMI.

Accordingly, we compared in-hospital outcomes of AMI patients with reported marijuana use to those with no reported marijuana use. We hypothesized that marijuana use would be associated with increased risk of adverse outcomes in AMI patients.

Interestingly, marijuana-using patients were significantly less likely to die, experience shock, or require an IABP  post AMI than patients with no reported marijuana use.

These results suggest that, contrary to our hypothesis, marijuana use was not associated with increased risk of adverse short-term outcomes following AMI.

Furthermore, marijuana use was associated with decreased in-hospital mortality post-AMI.”

https://www.ncbi.nlm.nih.gov/pubmed/29995914

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199705

“Myocardial Infarction (Heart Attack)”  https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0021982/

Development of a Cannabinoid-Based Photoaffinity Probe to Determine the Δ8/9-Tetrahydrocannabinol Protein Interaction Landscape in Neuroblastoma Cells.

Cannabis and Cannabinoid Research cover image

“Δ9-Tetrahydrocannabinol (THC), the principle psychoactive ingredient in Cannabis, is widely used for its therapeutic effects in a large variety of diseases, but it also has numerous neurological side effects. The cannabinoid receptors (CBRs) are responsible to a large extent for these, but not all biological responses are mediated via the CBRs.

Objectives: The identification of additional target proteins of THC to enable a better understanding of the (adverse) physiological effects of THC.

Methods: In this study, a chemical proteomics approach using a two-step photoaffinity probe is applied to identify potential proteins that may interact with THC.

Results: Photoaffinity probe 1, containing a diazirine as a photocrosslinker, and a terminal alkyne as a ligation handle, was synthesized in 14 steps. It demonstrated high affinity for both CBRs. Subsequently, two-step photoaffinity labeling in neuroblastoma cells led to identification of four potential novel protein targets of THC. The identification of these putative protein hits is a first step towards a better understanding of the protein interaction profile of THC, which could ultimately lead to the development of novel therapeutics based on THC.”

https://www.ncbi.nlm.nih.gov/pubmed/29992186

https://www.liebertpub.com/doi/10.1089/can.2018.0003

Composition and Use of Cannabis Extracts for Childhood Epilepsy in the Australian Community

Scientific Reports

“Recent surveys suggest that many parents are using illicit cannabis extracts in the hope of managing seizures in their children with epilepsy. In the current Australian study we conducted semi-structured interviews with families of children with diverse forms of epilepsy to explore their attitudes towards and experiences with using cannabis extracts.

Contrary to family’s expectations, most samples contained low concentrations of cannabidiol, while Δ9-tetrahydrocannabinol was present in nearly every sample. These findings highlight profound variation in the illicit cannabis extracts being currently used in Australia and warrant further investigations into the therapeutic value of cannabinoids in epilepsy.

The phenomenon is not without supporting scientific evidence. Many preclinical studies have identified potent anticonvulsant effects of various cannabinoids in animal models of epilepsy, and a mechanistic understanding of such effects is emerging.

A considerable proportion of families reported cannabis extracts being “effective” in reducing their child’s seizure burden and improving their overall condition, with one family reporting seizure-freedom in their child for at least 12 months. Over half of the cannabis extracts were associated with families reducing or ceasing their use of the child’s conventional antiepileptic drugs.”

https://www.nature.com/articles/s41598-018-28127-0

“Cannabis chemical THC could be missing ‘piece to the puzzle’ in treating kids with epilepsy” http://www.abc.net.au/news/2018-07-05/epilepsy-treatment-cannabis-chemical-thc/9944878

Medical Cannabis Legalization and Opioid Prescriptions: Evidence on US Medicaid Enrollees during 1993-2014.

Addiction banner

“While the US has been experiencing an opioid epidemic, 29 states and Washington DC have legalized cannabis for medical use. This study examined whether statewide medical cannabis legalization was associated with reduction in opioids received by Medicaid enrollees.

FINDINGS:

For Schedule III opioid prescriptions, medical cannabis legalization was associated with a 29.6% (p=0.03) reduction in number of prescriptions, 29.9% (p=0.02) reduction in dosage, and 28.8% (p=0.04) reduction in related Medicaid spending. No evidence was found to support the associations between medical cannabis legalization and Schedule II opioid prescriptions. Permitting medical cannabis dispensaries was not associated with Schedule II or Schedule III opioid prescriptions after controlling for medical cannabis legalization. It was estimated that, if all the states had legalized medical cannabis by 2014, Medicaid annual spending on opioid prescriptions would be reduced by 17.8 million dollars.

CONCLUSION:

Statewide medical cannabis legalization appears to have been associated with reductions in both prescriptions and dosages of Schedule III (but not Schedule II) opioids received by Medicaid enrollees in the US.”

https://www.ncbi.nlm.nih.gov/pubmed/29989239

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14382