Pharmacotherapeutic considerations for use of cannabinoids to relieve pain in patients with malignant diseases.

 

“The aim of this review was to assess the efficacy of cannabis preparations for relieving pain in patients with malignant diseases, through a systematic review of randomized controlled trials (RCTs), which were predominantly double-blind trials that compared cannabis preparation to a placebo.

RESULTS:

Fifteen of the 18 trials demonstrated a significant analgesic effect of cannabinoids as compared to placebo. The most commonly reported adverse effects were generally well tolerated, mild to moderate. The main side effects were drowsiness, nausea, vomiting and dry mouth. There is evidence that cannabinoids are safe and modestly effective in neuropathic pain and also for relieving pain in patients with malignant diseases. The proportion of “responders” (patients who at the end of 2 weeks of treatment reported ≥30% reduction in pain intensity on a scale of 0-10, which is considered to be clinically important) was 43% in comparison with placebo (21%).

CONCLUSION:

The target dose for relieving pain in patients with malignant diseases is most likely about 10 actuations per day, which is about 27 mg tetrahydrocannabinol (THC) and 25 mg cannabidiol (CBD), and the highest approved recommended dose is 12 actuations per day (32 mg THC/30 mg CBD). Further large studies of cannabinoids in homogeneous populations are required.”

https://www.ncbi.nlm.nih.gov/pubmed/29719417

https://www.dovepress.com/pharmacotherapeutic-considerations-for-use-of-cannabinoids-to-relieve–peer-reviewed-article-JPR

Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids

Image result for frontiers in oncology

“Many in vitro and in vivo studies have reported on the antitumorigenic effects of plant-derived cannabinoids (CBDs) and their synthetic analogs, including effects in inducing apoptosis and inhibiting tumor cell growth and metastasis.

Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs), with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation.

This study explores the potential of combination approaches employing CBDs with radiotherapy (RT) or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed.

The advantage of combining CBDs with other therapies is that this may allow simultaneous targeting of tumor progression at different levels, while minimizing toxicities for these therapies relative to toxicities from higher doses when used as monotherapies.”

“Cannabis Science Announces the Second Frontiers Peer-Reviewed Publication of its Research Results on the Use of Cannabinoids in the Treatment of Cancers”  https://globenewswire.com/news-release/2018/05/01/1493854/0/en/Cannabis-Science-Announces-the-Second-Frontiers-Peer-Reviewed-Publication-of-its-Research-Results-on-the-Use-of-Cannabinoids-in-the-Treatment-of-Cancers.html

Cannabis, from Plant to Pill.

British Journal of Clinical Pharmacology banner

“The therapeutic application of Cannabis is attracting substantial public and clinical interest. The Cannabis plant has been described as a veritable ‘treasure trove’, producing more than a hundred different cannabinoids, although the focus to date has been on the psychoactive molecule delta-9-tetraydrocannabinol (THC) and cannabidiol (CBD).

Other numerous secondary metabolites of Cannabis the terpenes, some of which share the common intermediary geranyl diphosphate (GPP) with the cannabinoids, are hypothesised to contribute synergistically to their therapeutic benefits, an attribute that has been described as the ‘entourage effect’.

The effective delivery of such a complex multicomponent pharmaceutical relies upon the stable genetic background and standardised growth of the plant material, particularly if the raw botanical product in the form of the dried pistillate inflorescence (flos) is the source.

Following supercritical CO2 extraction of the inflorescence (and possibly bracts), the secondary metabolites can be blended to provide a specific ratio of major cannabinoids (THC:CBD) or individual cannabinoids can be isolated, purified and supplied as the pharmaceutical. Intensive breeding strategies will provide novel cultivars of Cannabis possessing elevated levels of specific cannabinoids or other secondary metabolites.”

https://www.ncbi.nlm.nih.gov/pubmed/29701252

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bcp.13618

The effect of high-dose dronabinol (oral THC) maintenance on cannabis self-administration.

Drug and Alcohol Dependence Home

“There is a clear need for advancing the treatment of cannabis use disorders. Prior research has demonstrated that dronabinol (oral THC) can dose-dependently suppress cannabis withdrawal and reduce the acute effects of smoked cannabis.

The present study was conducted to evaluate whether high-dose dronabinol could reduce cannabis self-administration among daily users.

CONCLUSIONS:

Chronic dronabinol dosing can reduce cannabis self-administration in daily cannabis users and suppress withdrawal symptoms. Cannabinoid agonist medications should continue to be explored for therapeutic utility in the treatment of cannabis use disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/29689485

https://www.drugandalcoholdependence.com/article/S0376-8716(18)30184-4/fulltext

Testing associations between cannabis use and subcortical volumes in two large population-based samples.

Addiction banner

“Disentangling the putative impact of cannabis on brain morphology from other comorbid substance use is critical. After controlling for the effects of nicotine, alcohol and multi-substance use, this study aimed to determine whether frequent cannabis use is associated with significantly smaller subcortical grey matter volumes.

FINDINGS:

After correcting for multiple testing (p=0.007), cannabis use was unrelated to any subcortical ROI. However, maximum nicotine use was associated with significantly smaller thalamus volumes in middle-age males.

CONCLUSIONS:

In exploratory analyses based on young adult and middle age samples, normal variation in cannabis use is statistically unrelated to individual differences in brain morphology as measured by subcortical volume.”

https://www.ncbi.nlm.nih.gov/pubmed/29691937

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14252

[The impact of cannabinoids on the endocrine system].

 

Related image

“Cannabinoids are naturally occurring compounds, derivatives of Indian hemp, in which tetrahydrocannabinol (THC) is the most important. Marijuana, hashish and hash oil are among those most commonly used in the group.

Cannabinoids (marjhuana and hashish) have been used throughout recorded history as effective drugs in treating various diseases and conditions such as: malaria, hypertension, constipation, bronchial asthma, rheumatic pains, and as natural pain relief in labour and joint pains.

Marijuana acts through cannabinoid receptors CB 1 and CB2. Both receptors inhibit cAMP accummulation (through Gi/o proteins) and stimulate mitrogen- activated protein kinase. CB1 rceptors are located in CNS and in adipose tissue, digestive tract, muscles, heart, lungs, liver, kidneys, gonads, prostate gland and other peripheral tissues. CB2 cannabinoid receptors are located in the peripheral nervous system (at the ends of peripheral nerves), and on the surfaces of the cells of the immunological system.

The discovery of endogenous cannabinoids has contributed to a better understanding of their role in the regulation of the intake of food, energetic homeostasis and their significant influence on the endocrine system.”

Palatability and oral cavity tolerability of THC:CBD oromucosal spray and possible improvement measures in multiple sclerosis patients with resistant spasticity: a pilot study.

Future Medicine Logo

“Complaints about Δ9-tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray (Sativex®; GW Pharma Ltd, Sailsbury, UK) in the management of multiple sclerosis spasticity include unpleasant taste and oral mucosal anomalies.

This pilot study assessed the use of sugar-free chewing gum and/or a refrigerated bottle of THC:CBD oromucosal spray to mitigate these effects.

RESULTS:

Taste perception in patients receiving chewing gum ± cold bottle intervention (Groups A and C combined) was significantly (p = 0.0001) improved from baseline to week 4 while maintaining spasticity control.

CONCLUSION:

Patient comfort, satisfaction and treatment adherence may benefit from these interventions.”

https://www.ncbi.nlm.nih.gov/pubmed/29683408

https://www.futuremedicine.com/doi/10.2217/nmt-2017-0056

Cannabidiol Based Medical Cannabis in Children with Autism- a Retrospective Feasibility Study

Home

“Objective: This retrospective study assessed safety, tolerability and efficacy of cannabidiol (CBD) based medical cannabis, as an adjuvant therapy, for refractory behavioral problems in children with ASD.

Background: Anecdotal evidence of successful cannabis treatment in children with autism spectrum disorder (ASD) are accumulating but formal studies are lacking.

Design/Methods: Sixty children with ASD (age = 11.8± 3.5, range 5.0–17.5; 77% low functioning; 83% boys) were treated with oral CBD and tetrahydrocannabinol (THC) at a ratio of 20:1. The dose was up-titrated to effect (maximal CBD dose − 10mg/kg/d). Tolerability and efficacy were assessed using a modified Liverpool Adverse Events Profile, the Caregiver Global Impression of Change (CGIC) scale, the Home Situations Questionnaire–Autism Spectrum Disorder (HSQ-ASD) and the Autism Parenting Stress Index (APSI).

Results: Following the cannabis treatment, behavioral outbreaks were much improved or very much improved (on the CGIC scale) in 61% of patients. The anxiety and communication problems were much or very much improved in 39% and 47% respectively. Disruptive behaviors, were improved by 29% from 4.74±1.82 as recorded at baseline on the HSQ-ASD to 3.36±1.56 following the treatment. Parents reported less stress as reflected in the APSI scores, changing by 33% from 2.04±0.77 to 1.37±0.59. The effect on all outcome measures was more apparent in boys with non-syndromic ASD. Adverse events included sleep disturbances (14%) irritability (9%) and loss of appetite (9%).

Conclusions: This preliminary study support the feasibility of CBD based medical cannabis as a promising treatment option for refractory behavioral problems in children with ASD. Based on these promising results, we have launched a large, double blind, placebo controlled cross-over trial with 120 participants (NCT02956226).”

http://n.neurology.org/content/90/15_Supplement/P3.318

Marijuana Use by Adolescents and Young Adults with Inflammatory Bowel Disease.

Journal of Pediatrics Home

“Marijuana use by adolescents and young adults with IBD is common and perceived as beneficial.”

https://www.ncbi.nlm.nih.gov/pubmed/29673723

http://www.jpeds.com/article/S0022-3476(18)30388-3/fulltext

Dronabinol oral solution in the management of anorexia and weight loss in AIDS and cancer.

“The true incidence of anorexia secondary to human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and cancer is not well classified owing to the fact that there is a lack of standardized definitions and recent clinical data in these settings.

Dronabinol, or Δ-9-tetrahydrocannabinol, is a synthetic molecule that closely mimics the action of Cannabis sativa L., a naturally occurring compound activated in the central nervous system by cannabinoid receptors.

Dronabinol exerts its effects by directly acting on the vomiting and appetite control centers in the brain, which in turn increases appetite and prevents vomiting.

In the USA, dronabinol is currently available in two dosage formulations – oral capsule and oral solution. While the oral capsule was initially approved by the US Food and Drug Administration in 1985, the recent approval of the oral solution in 2016 presents an “easy-to-swallow” alternative for patients using or intending to use dronabinol.

Dronabinol is indicated in adult patients with HIV/AIDS for the treatment of anorexia and weight loss. However, there is no approved indication in the setting of cancer-related anorexia and weight loss. This review aims at presenting available data on the use of oral dronabinol in the management of anorexia and weight loss in HIV/AIDS and cancer, as well as characterizing and highlighting the pharmacotherapeutic considerations of the newest formulation of dronabinol.”