Cannabinoids for the Treatment of Chronic Pruritus: A Review.

Journal of the American Academy of Dermatology Home“Medical marijuana is becoming widely available to patients in the U.S. and with recreational marijuana now legalized in many states, patient interest is on the rise.

The endocannabinoid system plays an important role in skin homeostasis in addition to broader effects on neurogenic responses such as pruritus and nociception, inflammation, and immune reactions. There are numerous studies of in vitro and animal models that provide insight into the possible mechanisms of cannabinoid modulation on pruritus, with the most evidence behind neuronal modulation of both peripheral itch fibers and centrally-acting cannabinoid receptors.

In addition, human studies, while limited due to differences in cannabinoids used, disease models, and delivery method, have consistently shown significant reductions in both scratching and symptomatology in chronic pruritus. Clinical studies that have shown reduction in pruritus in several dermatologic (atopic dermatitis, psoriasis, asteatotic eczema, prurigo nodularis, allergic contact dermatitis) and systemic (uremic pruritus, cholestatic pruritus) diseases.

These preliminary human studies warrant controlled trials to confirm the benefit of cannabinoids for treatment of pruritus and to standardize treatment regimens and indications. In patients who have refractory chronic pruritus after standard therapies, cannabinoid formulations may be considered as an adjuvant therapy where it is legal.”

https://www.ncbi.nlm.nih.gov/pubmed/31987788

https://www.jaad.org/article/S0190-9622(20)30120-1/pdf

Abnormal Cannabidiol Affects Production of Pro-Inflammatory Mediators and Astrocyte Wound Closure in Primary Astrocytic-Microglial Cocultures.

molecules-logo “Abnormal cannabidiol (abn-CBD) exerts neuroprotective effects in vivo and in vitro. In the present study, we investigated the impact of abn-CBD on the glial production of proinflammatory mediators and scar formation within in vitro models. Primary astrocytic-microglial cocultures and astrocytic cultures from neonatal C57BL/6 mice and CB2 receptor knockout mice were stimulated with lipopolysaccharide (LPS), and the concentrations of tumor necrosis factor α (TNFα), interleukin-6 (IL-6) and nitrite were determined. Furthermore, we performed a live cell microscopy-based scratch-wound assay. After LPS stimulation, TNFα, IL-6 and nitrite production was more strongly increased in cocultures than in isolated astrocytes. Abn-CBD treatment attenuated the LPS-induced production of TNFα and nitrite in cocultures, while IL-6 production remained unaltered. In isolated astrocytes, only LPS-induced TNFα production was reduced by abn-CBD. Similar effects were observed after abn-CBD application in cocultures of CB2 knockout mice. Interestingly, LPS-induced TNFα and nitrite levels were far lower in CB2 knockout cultures compared to wildtypes, while IL-6 levels did not differ. In the scratch-wound assay, treatment with abn-CBD decelerated wound closure when microglial cells were present. Our data shows a differential role of abn-CBD for modulation of glial inflammation and astrocytic scar formation. These findings provide new explanations for mechanisms behind the neuroprotective potential of abn-CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31979350

https://www.mdpi.com/1420-3049/25/3/496

Phytocannabinoids in Neurological Diseases: Could They Restore a Physiological GABAergic Transmission?

ijms-logo“γ-Aminobutyric acid type A receptors (GABAARs) are the main inhibitory mediators in the central nervous system (CNS). GABAARs are pentameric ligand gated ion channels, and the main subunit composition is usually 2α2βγ, with various isotypes assembled within a set of 19 different subunits. The inhibitory function is mediated by chloride ion movement across the GABAARs, activated by synaptic GABA release, reducing neuronal excitability in the adult CNS. Several studies highlighted the importance of GABA-mediated transmission during neuro-development, and its involvement in different neurological and neurodevelopmental diseases, from anxiety to epilepsy. However, while it is well known how different classes of drugs are able to modulate the GABAARs function (benzodiazepines, barbiturates, neurosteroids, alcohol), up to now little is known about GABAARs and cannabinoids interaction in the CNS. Endocannabinoids and phytocannabinoids are lately emerging as a new class of promising drugs for a wide range of neurological conditions, but their safety as medication, and their mechanisms of action are still to be fully elucidated. In this review, we will focus our attention on two of the most promising molecules (Δ9-tetrahydrocannabinol; Δ9-THC and cannabidiol; CBD) of this new class of drugs and their possible mechanism of action on GABAARs.”

https://www.ncbi.nlm.nih.gov/pubmed/31979108

https://www.mdpi.com/1422-0067/21/3/723

Cannabis use and outcomes after aneurysmal subarachnoid hemorrhage: A nationwide retrospective cohort study.

Journal of Clinical Neuroscience Home“Cannabis is the most consumed recreational drug in the world.

It is possible that cannabis has an association with an increased risk of vasospasm-related strokes and delayed cerebral ischemia (DCI), which are major causes of morbidity and mortality in aneurysmal subarachnoid hemorrhage (aSAH). Hence, this study aimed to explore the independent relationship between cannabis use and outcomes after aSAH using the 2016 United States Nationwide Inpatient Sample.

RESULTS:

There were 42,394 patients identified with aSAH, of whom 925 were identified as cannabis users.

Cannabis users and non-users were similar in terms of severity of aSAH.

Although the unadjusted mortality rate was lower among cannabis users (16%) than non-users (22%), (p = 0.04), both the age-adjusted odds ratio (OR) (0.83, 95% confidence interval (CI): 0.56; 1.24) and the multivariate-adjusted OR (0.87, 95% CI: 0.54; 1.42) did not reach statistical significance.

Secondary outcomes did not reach statistical significance.

CONCLUSION:

In this nationwide cohort, cannabis users with aSAH had similar outcomes compared to nonusers. However, these results are likely limited by underreporting of cannabis use. Future prospective studies are needed to elucidate the pathophysiology and association between cannabis and outcomes following aSAH.”

https://www.ncbi.nlm.nih.gov/pubmed/31973920

https://www.jocn-journal.com/article/S0967-5868(19)31930-7/fulltext

Cannabinoids CB2 Receptors, One New Promising Drug Target for Chronic and Degenerative Pain Conditions in Equine Veterinary Patients.

Journal of Equine Veterinary Science“Osteoarticular equine disease is a common cause of malady; in general, its therapy is supported on steroids and nonsteroidal anti-inflammatories. Nevertheless, many side effects may develop when these drugs are administered. Nowadays, the use of new alternatives for this pathology attention is demanded; in that sense, cannabinoid CB2 agonists may represent a novel alternative.

Cannabinoid belongs to a group of molecules known by their psychoactive properties; they are synthetized by the Cannabis sativa plant, better known as marijuana.

The aim of this study was to contribute to understand the pharmacology of cannabinoid CB2 receptors and its potential utilization on equine veterinary patients with a chronic degenerative painful condition. In animals, two main receptors for cannabinoids are recognized, the cannabinoid receptor type 1 and the cannabinoid receptor type 2. Once they are activated, both receptors exert a wide range of physiological responses, as nociception modulation.

Recently, it has been proposed the use of synthetic cannabinoid type 2 receptor agonists; those receptors looks to confer antinociceptive properties but without the undesired psychoactive side effects; for that reason, veterinary patients, whit chronical degenerative diseases as osteoarthritis may alleviate one of the most common symptom, the pain, which in some cases for several reasons, as patient individualities, or side effects produced for more conventional treatments cannot be attended in the best way.”

https://www.ncbi.nlm.nih.gov/pubmed/31952645

https://www.sciencedirect.com/science/article/abs/pii/S073708061930629X?via%3Dihub

Medicinal cannabis for psychiatric disorders: a clinically-focused systematic review.

 Image result for bmc psychiatry“Medicinal cannabis has received increased research attention over recent years due to loosening global regulatory changes.

Medicinal cannabis has been reported to have potential efficacy in reducing pain, muscle spasticity, chemotherapy-induced nausea and vomiting, and intractable childhood epilepsy. Yet its potential application in the field of psychiatry is lesser known.

CONCLUSIONS:

There is currently encouraging, albeit embryonic, evidence for medicinal cannabis in the treatment of a range of psychiatric disorders. Supportive findings are emerging for some key isolates, however, clinicians need to be mindful of a range of prescriptive and occupational safety considerations, especially if initiating higher dose THC formulas.”

https://www.ncbi.nlm.nih.gov/pubmed/31948424

https://bmcpsychiatry.biomedcentral.com/articles/10.1186/s12888-019-2409-8

Neuroprotective and Neuromodulatory Effects Induced by Cannabidiol and Cannabigerol in Rat Hypo-E22 cells and Isolated Hypothalamus.

antioxidants-logo “Cannabidiol (CBD) and cannabigerol (CBG) are non-psychotropic terpenophenols isolated from Cannabis sativa, which, besides their anti-inflammatory/antioxidant effects, are able to inhibit, the first, and to stimulate, the second, the appetite although there are no studies elucidating their role in the hypothalamic appetite-regulating network. Consequently, the aim of the present research is to investigate the role of CBD and CBG in regulating hypothalamic neuromodulators. Comparative evaluations between oxidative stress and food intake-modulating mediators were also performed.

RESULTS:

Both CBD and CBG inhibited NPY and POMC gene expression and decreased the 3-HK/KA ratio in the hypothalamus. The same compounds also reduced hypothalamic NE synthesis and DA release, whereas the sole CBD inhibited 5-HT synthesis.

CONCLUSION:

The CBD modulates hypothalamic neuromodulators consistently with its anorexigenic role, whereas the CBG effect on the same mediators suggests alternative mechanisms, possibly involving peripheral pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/31941059

https://www.mdpi.com/2076-3921/9/1/71

Nose-to-brain Delivery of Natural Compounds for the Treatment of Central Nervous System Disorders.

“Several natural compounds have demonstrated potential for the treatment of central nervous system disorders such as ischemic cerebrovascular disease, glioblastoma, neuropathic pain, neurodegenerative diseases, multiple sclerosis and migraine.

This is due to their well-known antioxidant, anti-inflammatory, neuroprotective, anti-tumor, anti-ischemic and analgesic properties. Nevertheless, many of these molecules have poor aqueous solubility, low bioavailability and extensive gastrointestinal and/or hepatic first-pass metabolism, leading to a quick elimination as well as low serum and tissue concentrations.

Thus, the intranasal route emerged as a viable alternative to oral or parenteral administration, by enabling a direct transport into the brain through the olfactory and trigeminal nerves. With this approach, the blood-brain barrier is circumvented and peripheral exposure is reduced, thereby minimizing possible adverse effects.

OBJECTIVE:

Herein, brain-targeting strategies for the nose-to-brain delivery of natural compounds, including flavonoids, cannabinoids, essential oils and terpenes, will be reviewed and discussed. Brain and plasma pharmacokinetics of these molecules will be analyzed and related to their physicochemical characteristics and formulation properties.

CONCLUSION:

Natural compounds constitute relevant alternatives for the treatment of brain diseases but often require loading into nanocarrier systems to reach the central nervous system in sufficient concentrations. Future challenges lie in a deeper characterization of their therapeutic mechanisms and in the development of effective, safe and brain-targeted delivery systems for their intranasal administration.”

https://www.ncbi.nlm.nih.gov/pubmed/31939728

http://www.eurekaselect.com/178321/article

Prevention of Pseudomonas aeruginosa Biofilm Formation on Soft Contact Lenses by Allium sativum Fermented Extract (BGE) and Cannabinol Oil Extract (CBD)

antibiotics-logo “Two natural mixtures, Allium sativum fermented extract (BGE) and cannabinol oil extract (CBD), were assessed for their ability to inhibit and remove Pseudomonas aeruginosa biofilms on soft contact lenses in comparison to a multipurpose Soft Contact Lens-care solution present on the Italian market.

The study showed that BGE and CBD have good effect on inhibition of biofilm formation and removal of preformed biofilms, which makes them promising agents that could be exploited to develop more effective care solutions.”

https://www.ncbi.nlm.nih.gov/pubmed/31835470

https://www.mdpi.com/2079-6382/8/4/258

Beta‐caryophyllene, a dietary terpenoid, inhibits nicotine‐taking and nicotine‐seeking in rodents

British Journal of Pharmacology banner“Beta-caryophyllene (BCP) is a dietary plant-derived terpenoid that has been used as a food additive for many decades.

Recent studies indicate that BCP is a cannabinoid CB2 receptor (CB2R) agonist with medical benefits for a number of human diseases. However, little is known about its therapeutic potential for drug abuse and addiction.

The present findings suggest that BCP has significant anti-nicotine effects via both CB2 and non-CB2 receptor mechanisms, and therefore, deserves further study as a potential new pharmacotherapy for cigarette smoking cessation.”

https://www.ncbi.nlm.nih.gov/pubmed/31883107

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14969

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142