The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease.

Image result for Neurogastroenterol Motil

“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract.

Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors.

After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS.

Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity.

In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer.

PURPOSE:

The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27561826

Targeting the endocannabinoid system: future therapeutic strategies.

Image result for Drug Discov Today.

“The endocannabinoid system (ECS) is involved in many physiological regulation pathways in the human body, which makes this system the target of many drugs and therapies. In this review, we highlight the latest studies regarding the role of the ECS and the drugs that target it, with a particular focus on the basis for the discovery of new cannabinoid-based drugs. In addition, we propose some key steps, such as the creation of a cannabinoid-receptor interaction matrix (CRIM) and the use of metabolomics, towards the development of improved and more specific drugs for each relevant disease.”

http://www.ncbi.nlm.nih.gov/pubmed/27554802

Cannabinoid type 1 receptor antagonism ameliorates harmaline-induced essential tremor in rat.

“Essential tremor (ET) is a neurological disorder with unknown etiology. Its symptoms include cerebellar motor disturbances, cognitive and personality changes, hearing and olfactory deficits. Excitotoxic cerebellar climbing fibre hyperactivity may underlie essential tremor and has been emulated in rodents by systemic harmaline administration.

Cannabinoid receptor agonists can cause motor disturbances although there are also anecdotal reports of therapeutic benefits of cannabis in motor disorders. We set out to establish the effects of cannabinoid type 1 receptor agonism and antagonism in an established rodent model of ET using a battery of accepted behaviour assays in order to determine risk and therapeutic potential of endocannabinoid system modulation in ET.

Overall, harmaline induced robust tremor that was typically worsened across the measured behavioural domains by CB type 1 (CB1 ) receptor agonism but ameliorated by cannabinoid type 1 receptor antagonism.

CONCLUSIONS AND IMPLICATIONS:

These results provide the first evidence of effects of endocannabinoid system modulation on motor function in the harmaline model of essential tremor and suggest that CB1 receptor manipulation warrants clinical investigation as a therapeutic approach to protection against behavioural disturbances associated with essential tremor.”

http://www.ncbi.nlm.nih.gov/pubmed/27545646

Anandamide reverses depressive-like behavior, neurochemical abnormalities and oxidative-stress parameters in streptozotocin-diabetic rats: Role of CB1 receptors.

“The pathophysiology associated with increased prevalence of depression in diabetics is not completely understood, although studies have pointed the endocannabinoid system as a possible target. Then, we aimed to investigate the role of this system in the pathophysiology of depression associated with diabetes.

Together, our data suggest that in depression associated with diabetes, the endocannabinoid anandamide has a potential to induce neuroadaptative changes able to improve the depressive-like response by its action as a CB1 receptor agonist.”

http://www.ncbi.nlm.nih.gov/pubmed/27544303

Orchestrated activation of mGluR5 and CB1 promotes neuroprotection.

“The metabotropic glutamate receptor 5 (mGluR5) and the cannabinoid receptor 1 (CB1) exhibit a functional interaction, as CB1 regulates pre-synaptic glutamate release and mGluR5 activation increases endocannabinoid synthesis at the post-synaptic site. Since both mGluR5 and CB1promote neuroprotection, we delineated experiments to investigate a possible link between CB1 and mGluR5 activation in the induction of neuroprotection using primary cultured corticostriatal neurons. We find that either the pharmacological blockade or the genetic ablation of either mGluR5 or CB1 can abrogate both CB1– and mGluR5-mediated neuroprotection against glutamate insult. Interestingly, decreased glutamate release and diminished intracellular Ca2+ do not appear to play a role in CB1 and mGluR5-mediated neuroprotection. Rather, these two receptors work cooperatively to trigger the activation of cell signaling pathways to promote neuronal survival, which involves MEK/ERK1/2 and PI3K/AKT activation. Interestingly, although mGluR5 activation protects postsynaptic terminals and CB1 the presynaptic site, intact signaling of both receptors is required to effectively promote neuronal survival. In conclusion, mGluR5 and CB1 act in concert to activate neuroprotective cell signaling pathways and promote neuronal survival.”

Cannabinoids and the gut: new developments and emerging concepts.

“Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain. The mechanistic basis of these treatments emerged after the discovery of Delta(9)-tetrahydrocannabinol as the major constituent of Cannabis. Further progress was made when the receptors for Delta(9)-tetrahydrocannabinol were identified as part of an endocannabinoid system, that consists of specific cannabinoid receptors, endogenous ligands and their biosynthetic and degradative enzymes. Anatomical, physiological and pharmacological studies have shown that the endocannabinoid system is widely distributed throughout the gut, with regional variation and organ-specific actions. It is involved in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation and cell proliferation in the gut. Cellular targets have been defined that include the enteric nervous system, epithelial and immune cells. Molecular targets of the endocannabinoid system include, in addition to the cannabinoid receptors, transient receptor potential vanilloid 1 receptors, peroxisome proliferator-activated receptor alpha receptors and the orphan G-protein coupled receptors, GPR55 and GPR119. Pharmacological agents that act on these targets have been shown in preclinical models to have therapeutic potential. Here, we discuss cannabinoid receptors and their localization in the gut, the proteins involved in endocannabinoid synthesis and degradation and the presence of endocannabinoids in the gut in health and disease. We focus on the pharmacological actions of cannabinoids in relation to GI disorders, highlighting recent data on genetic mutations in the endocannabinoid system in GI disease.”

https://www.ncbi.nlm.nih.gov/pubmed/20117132/

Endocannabinoids in the gut.

“The endocannabinoid system mainly consists of endogenously produced cannabinoids (endocannabinoids) and two G protein-coupled receptors (GPCRs), cannabinoid receptors 1 and 2 (CB1 and CB2). This system also includes enzymes responsible for the synthesis and degradation of endocannabinoids and molecules required for the uptake and transport of endocannabinoids. In addition, endocannabinoid-related lipid mediators and other putative endocannabinoid receptors, such as transient receptor potential channels and other GPCRs have been identified. Accumulating evidence indicates that the endocannabinoid system is a key modulator of gastrointestinal physiology, influencing satiety, emesis, immune function, mucosal integrity, motility, secretion, and visceral sensation. In light of therapeutic benefits of herbal and synthetic cannabinoids, the vast potential of the endocannabinoid system for the treatment of gastrointestinal diseases has been demonstrated. This review focuses on the role of the endocannabinoid system in gut homeostasis and in the pathogenesis of intestinal disorders associated with intestinal motility, inflammation and cancer. Finally, links between gut microorganisms and the endocannabinoid system are briefly discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/27538961

CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson’s disease.

“The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice.

Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.”

http://www.ncbi.nlm.nih.gov/pubmed/27534533

“The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson’s disease (PD).” http://www.ncbi.nlm.nih.gov/pubmed/27531971

Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson’s Disease.

“The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson’s disease (PD).

The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD.

In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD.

Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP.

The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27531971

Heterologous Regulation of the Cannabinoid Type 1 Receptor by Angiotensin II in Astrocytes of Spontaneously Hypertensive Rats.

“Brainstem and cerebellar astrocytes have critical roles to play in hypertension and attention deficit hyperactivity disorder (ADHD), respectively. Angiotensin (Ang) II, via the astroglial Ang Type 1 receptor (AT1R), has been demonstrated to elevate pro-inflammatory mediators in the brainstem and the cerebellum.

The activation of astroglial Cannabinoid Type 1 Receptor (CB1R), a master regulator of homeostasis, has been shown to neutralize inflammatory states.

Factors that drive disease physiology, are known to alter the expression of CB1Rs.

In the current study, we investigated the role of Ang II in regulating CB1R protein and mRNA expression in astrocytes isolated from the brainstem and the cerebellum of Spontaneously Hypertensive Rats (SHRs).

The results were then compared with the normotensive counterpart, Wistar rats. Not only was the basal expression of CB1R protein and mRNA significantly lower in SHR brainstem astrocytes, but treatment with Ang II resulted in lowering it further in the initial 12 hours. In the case of cerebellum, Ang II upregulated the CB1R protein and mRNA in SHR astrocytes. While the effect of Ang II on CB1R protein was predominantly mediated via the AT1R in SHR brainstem; both AT1R and AT2R mediated Ang II’s effect in the SHR cerebellum.

This data is strongly indicative of a potential new mode of cross talk between components of the renin angiotensin system and the endocannabinoid system in astrocytes. The consequence of such a crosstalk could be a potential reduced endocannabinoid tone in brainstem in hypertensive states, but not in the cerebellum under the same conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/27529509