Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid.

“Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid which interacts with specific targets involved in carcinogenesis…

Here, we investigated whether CBG protects against colon tumorigenesis.

In vivo, CBG inhibited the growth of xenograft tumors as well as chemically-induced colon carcinogenesis.

CBG hampers colon cancer progression in vivo and selectively inhibits the growth of colorectal cancer cells, an effect shared by other TRPM8 antagonists.

CBG should be considered translationally in colorectal cancer prevention and cure.”

http://www.ncbi.nlm.nih.gov/pubmed/25269802

http://www.thctotalhealthcare.com/category/colon-cancer/

Δ(9)-tetrahydrocannabinol targeting estrogen receptor signaling: the possible mechanism of action coupled with endocrine disruption.

“Δ(9)-Tetrahydrocannabinol (Δ(9)-THC), a biologically active constituent of marijuana, possesses a wide variety of pharmacological and toxicological effects (e.g., analgesia, hypotension, reduction of inflammation, and anti-cancer effects).

Among Δ(9)-THC’s biological activities, its recognized anti-estrogenic activity has been the subject of investigations.

… Δ(9)-THC is used as both a drug of abuse (marijuana) and as a preventive therapeutic to treat pain and nausea in cancer patients undergoing chemotherapy…

…important to investigate the mechanistic basis underlying the anti-estrogenic activity of Δ(9)-THC…

We have recently reported that ERβ, a second type of ER, is involved in the Δ(9)-THC abrogation of E2/ERα-mediated transcriptional activity. Here we discuss the possible mechanism(s) of the Δ(9)-THC-mediated disruption of E2/ERα signaling by presenting our recent findings as well.”

http://www.ncbi.nlm.nih.gov/pubmed/25177025

 

Cannabinoid receptor type 2 activation in atherosclerosis and acute cardiovascular diseases.

“In the last decades, the cannabinoid system (comprising synthetic and endogenous cannabinoid agonists and antagonists, their receptors and degrading enzymes) has been shown to induce potent immunomodulatory activities in atherogenesis and acute ischemic complications.

Differently from the other cannabinoid receptors in which controversial results are reported, the selective activation of the cannabinoid receptor type 2 (CB2) has been shown to play anti-inflammatory and protective actions within atherosclerotic vessels and downstream ischemic peripheral organs.

CB2 is a transmembrane receptor that triggers protective intracellular pathways in cardiac, immune and vascular cells in both in human and animal models of atherosclerosis…

medications activating CB2 function in the circulation or peripheral target organs might be a promising approach against atherogenesis.

This review updates evidence from preclinical studies on different CB2-triggered pathways in atherosclerosis and acute ischemic events.”

http://www.ncbi.nlm.nih.gov/pubmed/25245379

Oxidative stress and cannabinoid receptor expression in type-2 diabetic rat pancreas following treatment with Δ9 -THC.

“We can suggest that Δ9 -THC may be an important agent for the treatment of oxidative damages induced by diabetes…

Furthermore, the present study for the first time emphasizes that Δ9 -THC may improve pancreatic cells via cannabinoid receptors in diabetes.

The aim of present study was to elucidate the effects of Δ9 -THC, a natural cannabinoid receptor agonist, on the expression and localization of cannabinoid receptors, and oxidative stress statue in type-2 diabetic rat pancreas.

Results demonstrate that the cannabinoid receptors are presented in both Langerhans islets and duct regions.

The curative effects of Δ9 -THC can be occurred via activation of cannabinoid receptors in diabetic rat pancreas.

Moreover, it may provide a protective effect against oxidative damage induced by diabetes.

Thus, it is suggested that Δ9 -THC can be a candidate for therapeutic alternatives of diabetes symptoms.”

http://www.ncbi.nlm.nih.gov/pubmed/25187240

http://www.thctotalhealthcare.com/category/diabetes/

Cannabinoid mouth spray brought help to a severely spastic young man.

“Cannabinoid was licensed in 2012 for the treatment of spasticity associated with multiple sclerosis in Finland. Spasticity is one of the main symptoms in cerebral palsies and a risk factor of multiple painful anomalies of the skeletal network. We describe a 28-year-old man with severe cerebral palsy, whose quality of life improved and the need for help decreased by using two daily mouth sprays of cannabinoid.”

http://www.ncbi.nlm.nih.gov/pubmed/25158585

Neuropathic orofacial pain: cannabinoids as a therapeutic avenue.

“Neuropathic orofacial pain (NOP) exists in several forms including pathologies such as burning mouth syndrome (BMS), persistent idiopathic facial pain (PIFP), trigeminal neuralgia (TN) and postherpetic neuralgia (PHN).

The pathophysiology of some of these conditions is still unclear and hence treatment options tend to vary and include a wide variety of treatments including cognitive behavior therapy, anti-depressants, anti-convulsants and opioids; however such treatments often have limited efficacy with a great amount of inter-patient variability and poorly tolerated side effects.

Analgesia is one the principal therapeutic targets of the cannabinoid system and many studies have demonstrated the efficacy of cannabinoid compounds in the treatment of neuropathic pain.

This review will investigate the potential use of cannabinoids in the treatment of symptoms associated with NOP.”

http://www.ncbi.nlm.nih.gov/pubmed/25150831

http://www.thctotalhealthcare.com/category/neuropathic-pain/

Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington’s disease.

An external file that holds a picture, illustration, etc.<br /><br />
Object name is nihms94694f6.jpg

“Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders… Cannabinoids may also offer neuroprotection in Huntington’s disease (HD)…

Here, we examined this hypothesis in a rat model ofHuntington’s disease (HD)…

Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate-induced death. That CB2 receptor agonists are neuroprotective was confirmed…

…neuroprotection was attained exclusively with antioxidant cannabinoids like Δ9-tetrahydrocannabinol (Δ9-THC; or cannabidiol (CBD)…

In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF-alpha.

Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706932/

http://www.thctotalhealthcare.com/category/huntingtons/

Mechanisms of control of neuron survival by the endocannabinoid system.

“Endocannabinoids act as retrograde messengers that, by inhibiting neurotransmitter release via presynaptic CB(1) cannabinoid receptors, regulate the functionality of many synapses. In addition, the endocannabinoid system participates in the control of neuron survival.

Thus, CB(1) receptor activation has been shown to protect neurons from acute brain injury as well as in neuroinflammatory conditions and neurodegenerative diseases.

Cannabinoid neuroprotective activity relies on the inhibition of glutamatergic neurotransmission and on other various mechanisms, and is supported by the observation that the brain overproduces endocannabinoids upon damage.

Besides promoting neuroprotection, a role for the endocannabinoid system in the control of neurogenesis from neural progenitors has been put forward. In addition, activation of CB(2) cannabinoid receptors on glial cells may also participate in neuroprotection by limiting the extent of neuroinflammation.

Altogether, these findings support that endocannabinoids constitute a new family of lipid mediators that act as instructive signals in the control of neuron survival.”

http://www.ncbi.nlm.nih.gov/pubmed/18781978

University Of Saskatchewan Research Suggests Marijuana Analogue Stimulates Brain Cell Growth

ScienceDaily: Your source for the latest research news

“A synthetic substance similar to ones found in marijuana stimulates cell growth in regions of the brain associated with anxiety and depression, pointing the way for new treatments for these diseases, according to University of Saskatchewan medical research published today in The Journal of Clinical Investigation.

Xia Zhang, an associate professor in the U of S neuropsychiatry research unit, led the team that tested the effects of HU-210, a potent synthetic cannabinoid similar to a group of compounds found in marijuana. The synthetic version is about 100 times as powerful as THC, the compound responsible for the high experienced by recreational users.

The team found that rats treated with HU-210 on a regular basis showed neurogenesis – the growth of new brain cells in the hippocampus. This region of the brain is associated with learning and memory, as well as anxiety and depression.

The effect is the opposite of most legal and illicit drugs such as alcohol, nicotine, heroin, and cocaine.

“Most ‘drugs of abuse’ suppress neurogenesis,” Zhang says. “Only marijuana promotes neurogenesis.””

http://www.sciencedaily.com/releases/2005/10/051016083817.htm

“Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects… In summary, since adult hippocampal neurogenesis is suppressed following chronic administration of opiates, alcohol, nicotine, and cocaine, the present study suggests that cannabinoids are the only illicit drug that can promote adult hippocampal neurogenesis following chronic administration.”  http://www.jci.org/articles/view/25509

Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington’s disease brain.

“Huntington’s disease (HD) is an inherited neurological disease with motor, cognitive and psychiatric symptoms. Characterised by neuronal degeneration, HD pathology is initially apparent in the striatum and cortex.

Considerable research has recently suggested that the neurological immune response apparent in brain injury and disease may provide a valuable therapeutic target.

Cannabinoid CB2 receptors are localised and up-regulated on a number of peripheral immune cell types following inflammation and injury.

…our observation that CB2 is present on blood vessel cells, with increased CD31 co-localisation in HD may represent a new context for CB2 therapeutic approaches to neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/24978314

http://www.thctotalhealthcare.com/category/huntingtons/