THE EFFECT OF PHYTOCANNABINOIDS ON AIRWAY HYPERRESPONSIVENESS, AIRWAY INFLAMMATION AND COUGH.

“Cannabis has been demonstrated to have bronchodilator, anti-inflammatory and anti-tussive activity in the airways, but, information on the active cannabinoids, their receptors and the mechanisms for their effects is limited.

We compared the effects of Δ9-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, cannabidiolic acid and tetrahydrocannabivarin…

The other cannabinoids did not influence cholinergic transmission and only Δ9-THC demonstrated effects on airway hyperresponsiveness, anti-inflammatory activity and antitussive activity in the airways.”

http://www.ncbi.nlm.nih.gov/pubmed/25655949

http://jpet.aspetjournals.org/content/early/2015/02/05/jpet.114.221283.long

Cannabinoid Receptor CB2 Is Involved in Tetrahydrocannabinol-Induced Anti-Inflammation against Lipopolysaccharide in MG-63 Cells.

“Cannabinoid Δ9-tetrahydrocannabinol (THC) is effective in treating osteoarthritis (OA)…

Activation of cannabinoid receptor CB2 reduces inflammation; whether the activation CB2 is involved in THC-induced therapeutic action for OA is still unknown.

We hypothesized that the activation of CB2 is involved in THC-induced anti-inflammation in the MG-63 cells exposed to LPS, and the anti-inflammation is mediated by cofilin-1…

We found that THC suppressed the release of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin- (IL-) 1β, IL-6, and IL-8, decreased nuclear factor-κB (NF-κB) expression, and inhibited the upregulation of cofilin-1 protein in the LPS-stimulated MG-63 cells.

These results suggested that CB2 is involved in the THC-induced anti-inflammation in LPS-stimulated MG-63 cells, and the anti-inflammation may be mediated by cofilin-1.”

http://www.ncbi.nlm.nih.gov/pubmed/25653478

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310496/

http://www.thctotalhealthcare.com/category/osteoarthritis/

The effects of Δ9-tetrahydrocannabinol and cannabidiol alone and in combination on damage, inflammation and in vitro motility disturbances in rat colitis

“Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief.

Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Δ9-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders.

Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis…

In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects.

As the two phytocannabinoids modulate the immune system and differ in their pharmacological profile, their combination could be more beneficial than either drug alone. Additionally CBD could not only potentiate the therapeutic effects of THC, but also attenuate some of its undesirable effects…”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2931570/

http://www.thctotalhealthcare.com/category/colitis/

Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

“Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system.

Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms.

However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease.

… we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability.

Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels.

In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans…

… demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo.

Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.”

http://www.ncbi.nlm.nih.gov/pubmed/25537576

http://www.thctotalhealthcare.com/category/experimental-autoimmune-encephalomyelitis/

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

[Potential applications of marijuana and cannabinoids in medicine]

“Cannabinoids, psychoactive substances present in cannabis, have been known to mankind for hundreds of years.

Apart from 9-tetrahydrocannabinol (THC) substances found in the cannabis herb with the highest toxicological value are cannabidiol (CBD) and cannabinol (CBN).

The discovery of CB1 and CB2 receptors, located in various tissues (ranging from the brain to peripheral tissues), has defined the potential objective of these new chemical substances’ effects.

Many studies on the application of cannabinoids in the treatment of various diseases such as diabetes, neoplasms, inflammatory diseases, neurological conditions, pain and vomitting were conducted.

Drugs containing e.g. THC appear on the pharmaceutical market.

Substances affecting cannabinoid receptors may show beneficial effects…”

http://www.ncbi.nlm.nih.gov/pubmed/25518584

 

 

The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat.

“Our study addressed the hypothesis that spinal release of endogenous opioids underlies Delta9-tetrahydrocannabinol (Delta9-THC)-induced antinociception in Freund’s adjuvant-induced arthritic and nonarthritic rats…

Our results indicate that morphine or Delta9-THC is equally potent and efficacious in both nonarthritic and arthritic rats.

Delta9-THC-induced antinociception…

We hypothesize that the elevated idyn A level in arthritic rats contributes to hyperalgesia by interaction with N-methyl-D-aspartate receptors, and that Delta9-THC induces antinociception by decreasing idyn A release.”

http://www.ncbi.nlm.nih.gov/pubmed/15189765

http://www.thctotalhealthcare.com/category/arthritis/

The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat involves the CB(2) cannabinoid receptor.

“Cannabinoid CB(2) receptors have been implicated in antinociception in animal models of both acute and chronic pain.

We evaluated the role both cannabinoid CB(1) and CB(2) receptors in mechanonociception in non-arthritic and arthritic rats.

The antinociceptive effect of Delta(9)-tetrahydrocannabinol (Delta(9)THC) was determined…

Our results indicate that the cannabinoid CB(2) receptor plays a critical role in cannabinoid-mediated antinociception, particularly in models of chronic inflammatory pain.”

http://www.ncbi.nlm.nih.gov/pubmed/17588560

http://www.thctotalhealthcare.com/category/arthritis/

http://www.thctotalhealthcare.com/category/pain-2/

Involvement of central and peripheral cannabinoid receptors on antinociceptive effect of tetrahydrocannabinol in muscle pain.

“Cannabinoid (CB) receptors have emerged as an attractive therapeutic target for pain management in recent years and the interest in the use of cannabinoids is gradually increasing, particularly in patients where conventional treatments fail…

This study suggests that THC could be a future pharmacological option in the treatment of muscle pain.

The local administration of THC could be an interesting option to treat this type of pain avoiding the central adverse effects.”

http://www.ncbi.nlm.nih.gov/pubmed/25446925

http://www.thctotalhealthcare.com/category/pain-2/

The Combination of Cannabidiol and Δ9-Tetrahydrocannabinol Enhances the Anticancer Effects of Radiation in an Orthotopic Murine Glioma Model.

“High-grade glioma is one of the most aggressive cancers in adult humans and long-term survival rates are very low as standard treatments for glioma remain largely unsuccessful.

Cannabinoids have been shown to specifically inhibit glioma growth as well as neutralize oncogenic processes such as angiogenesis.

In an attempt to improve treatment outcome, we have investigated the effect of Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) both alone and in combination with radiotherapy in a number of glioma cell lines (T98G, U87MG, and GL261).

Cannabinoids were used in two forms, pure (P) and as a botanical drug substance (BDS).

Results demonstrated a duration- and dose-dependent reduction in cell viability with each cannabinoid and suggested that THC-BDS was more efficacious than THC-P, whereas, conversely, CBD-P was more efficacious than CBD-BDS.

…increase in radiosensitivity was associated with an increase in markers of autophagy and apoptosis.

These in vitro results were recapitulated in an orthotopic murine model for glioma, which showed dramatic reductions in tumor volumes when both cannabinoids were used with irradiation.

Taken together, our data highlight the possibility that these cannabinoids can prime glioma cells to respond better to ionizing radiation, and suggest a potential clinical benefit for glioma patients by using these two treatment modalities.”

http://www.ncbi.nlm.nih.gov/pubmed/25398831

http://www.thctotalhealthcare.com/category/gllomas/

Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke

“Cannabis contains over 60 different terpeno-phenol compounds…

cannabidiol (CBD), cannabigerol (CBG), cannabidivarin (CBDV) are known as non-psychoactive components of cannabis.

These compounds have shown anti-inflammatory, immunosuppressive, analgesic, anxiolytic and anti-cancer effects…

Cannabinoids may play a role in neuroprotection in disorders such as stroke, Parkinson’s disease, traumatic brain injury and epilepsy…

It is well-known that delta9-THC and other cannabinoid CB1 receptor agonists are neuroprotective during global and focal ischemic injury…

Accumulating data now suggest that cannabinoid CB1 receptors contribute to neuroprotection… Emerging data now support the evidence of the anti-inflammatory action of CBD…

 We have previously reported that CBD  has a potent and long-lasting neuroprotective effect when administered both pre- and post-ischemia, whereas only pre-ischemic treatment with delta9-THC reduced the infarction size…

These results suggest that CBD may prevent post-ischemic injury progressively induced by ischemic stroke….

…anti-inflammatory, anti-oxidant, and neuroprotective effects of CBD. In particular, CBD exerts positive pharmacological effects in ischemic stroke and other chronic diseases, including Parkinson’s disease, Alzheimer’s disease, and rheumatoid arthritis.

The cerebroprotective action of CBD is CB1 receptor-independent, long-lasting, and has potent anti-oxidant activity. Importantly, CBD use does not lead to tolerance.

In the last 10 years, it has been possible to demonstrate that CBD has the following unique therapeutic profile: 1) a cannabinoid receptor-independent mechanism, 2) long-lasting cerebro- protective effect after ischemic stroke, and lack of development of tolerance.

Moreover, CBD has almost no side effects, including psychotropic activity.

Preliminary studies highlight the fact that the multifunctional actions of CBD may lead to benefits in more complex systems within the brain after ischemic stroke.

CBD offers new therapeutic possibilities for treating ischemic stroke…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036658/

http://www.thctotalhealthcare.com/category/stroke-2/