Antidepressant-like effects of β-caryophyllene on restraint plus stress-induced depression.

Behavioural Brain Research“Chronic stress is depressogenic by altering neurotrophic and neuroinflammatory environments of the organism. The endocannabinoid system controls cognitive and emotional responses related with stress through the interaction with endocannabinoid receptors. β-Caryophyllene (BCP) is a CB2 agonist that exhibited anti-inflammatory, analgesic effects but minimal psychoactive effects. To test if BCP exhibits antidepressant-like action, animals were chronically restrained with additional stressors for 28 days, and BCP (25, 50, 100 mg/kg) was intraperitoneally injected once a day during the stress inflicting period. Then despair related behaviors and hippocampal expression of neurotrophic, inflammatory and cannabinoid receptor levels were measured. To test the effect of BCP on long-term depression, field potentials were measured during the application of lipopolysaccharide and low frequency stimulation. In the tail suspension test and forced swim test, chronic stress-induced despair behaviors were reduced by BCP. Also BCP improved the stress-related changes in the hippocampal expression of COX-2, BDNF, and CB2 receptor expression. In organotypic hippocampal slices, BCP reduced the lipopolysaccharide-induced intensification of the long-term depression. In conclusion, BCP improved chronic stress related behavioral and biochemical changes. These results suggest that BCP may be effective in treating depression and stress related mental illnesses.”

https://www.ncbi.nlm.nih.gov/pubmed/31862467

https://linkinghub.elsevier.com/retrieve/pii/S0166432819313348

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”    https://www.ncbi.nlm.nih.gov/pubmed/18574142

The impact of cannabis access laws on opioid prescribing.

Journal of Health Economics“While recent research has shown that cannabis access laws can reduce the use of prescription opioids, the effect of these laws on opioid use is not well understood for all dimensions of use and for the general United States population. Analyzing a dataset of over 1.5 billion individual opioid prescriptions between 2011 and 2018, which were aggregated to the individual provider-year level, we find that recreational and medical cannabis access laws reduce the number of morphine milligram equivalents prescribed each year by 11.8 and 4.2 percent, respectively. These laws also reduce the total days’ supply of opioids prescribed, the total number of patients receiving opioids, and the probability a provider prescribes any opioids net of any offsetting effects. Additionally, we find consistent evidence that cannabis access laws have different effects across types of providers, physician specialties, and payers.”

https://www.ncbi.nlm.nih.gov/pubmed/31865260

“The results of this study suggest that passing cannabis access laws reduces the use of prescription opioids across several different measures of opioid prescriptions. Thus, the passage of Recreational cannabis laws (RCLs) or Medical cannabis laws (MCLs) may be a valid policy option for combating the ongoing opioid epidemic, even if these laws were not originally conceived for that purpose.”

https://www.sciencedirect.com/science/article/pii/S0167629618309020?via%3Dihub

THC exposure during adolescence does not modify nicotine reinforcing effects and relapse in adult male mice.

 This study investigated the effects of adolescent exposure to the main psychoactive component of cannabis, ∆9-tetrahydrocannabinol (THC), in the reinforcing properties of nicotine in adult male mice. Possible alterations in relapse to nicotine-seeking behaviour in adult animals due to THC adolescent exposure were also evaluated.

RESULTS:

Adolescent THC treatment did not modify acquisition and extinction of nicotine self-administration in adulthood. Moreover, THC exposure did not alter relapse to nicotine seeking induced by stress or nicotine-associated cues.

CONCLUSIONS:

These results suggest that a history of exposure to THC during adolescence under these particular conditions does not modify the reinforcing effects and seeking behaviour of nicotine in the adult period.”

https://www.ncbi.nlm.nih.gov/pubmed/31858159

https://link.springer.com/article/10.1007%2Fs00213-019-05416-8

Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala.

Image result for pnas“Even a brief exposure to severe stress strengthens synaptic connectivity days later in the amygdala, a brain area implicated in the affective symptoms of stress-related psychiatric disorders. However, little is known about the synaptic signaling mechanisms during stress that eventually culminate in its delayed impact on the amygdala. Hence, we investigated early stress-induced changes in amygdalar synaptic signaling in order to prevent its delayed effects.

Whole-cell recordings in basolateral amygdala (BLA) slices from rats revealed higher frequency of miniature excitatory postsynaptic currents (mEPSCs) immediately after 2-h immobilization stress. This was replicated by inhibition of cannabinoid receptors (CB1R), suggesting a role for endocannabinoid (eCB) signaling.

Stress also reduced N-arachidonoylethanolamine (AEA), an endogenous ligand of CB1R. Since stress-induced activation of fatty acid amide hydrolase (FAAH) reduces AEA, we confirmed that oral administration of an FAAH inhibitor during stress prevents the increase in synaptic excitation in the BLA soon after stress.

Although stress also caused an immediate reduction in synaptic inhibition, this was not prevented by FAAH inhibition. Strikingly, FAAH inhibition during the traumatic stressor was also effective 10 d later on the delayed manifestation of synaptic strengthening in BLA neurons, preventing both enhanced mEPSC frequency and increased dendritic spine-density.

Thus, oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala. This framework is of therapeutic relevance because of growing interest in targeting eCB signaling to prevent the gradual development of emotional symptoms and underlying amygdalar dysfunction triggered by traumatic stress.”

https://www.ncbi.nlm.nih.gov/pubmed/31843894

https://www.pnas.org/content/early/2019/12/13/1910322116

Cannabinoids and dystonia: an issue yet to be defined.

 “Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures. Besides motor manifestations, patients with dystonia also display non-motor signs and symptoms including psychiatric and sensory disturbances.

Symptomatic treatment of motor signs in dystonia largely relies on intramuscular botulinum toxin injections and, in selected cases, on deep brain stimulation. Oral medications and physical therapy offer a few benefits only in a minority of patients.

Cannabinoids have been shown to be a complementary treatment in several neurological disorders but their usefulness in dystonia have not been systematically assessed. Given recent policy changes in favor of cannabis use in clinical practice and the request for alternative treatments, it is important to understand how cannabinoids may impact people with dystonia.

Reviewing the evidence so far available and our own experience, cannabinoids seem to be effective in single cases but further studies are required to improve our understanding on their role as complementary treatment in dystonia.”

https://www.ncbi.nlm.nih.gov/pubmed/31848779

https://link.springer.com/article/10.1007%2Fs10072-019-04196-5

Potential role of cannabidiol for seizure control in a patient with recurrent glioma.

Journal of Clinical Neuroscience Home“Glioma-related epilepsy significantly impact on patients’ quality of life, and can often be difficult to treat. Seizures cause significant morbidity for example neurocognitive deterioration, which may result from seizures themselves or due to adverse effects from antiepileptic drugs. Management of tumour with surgery, radiotherapy and chemotherapy may contribute to seizure control, but tumour related epilepsy is often refractory despite adequate treatment with standard anti-epileptic medications. Given the increasing interest in medicinal cannabis (or cannabidiol or CBD) as an anti-epileptic drug, CBD may help with seizure control in glioma patients with treatment-refractory seizures. Here we present a case of a young lady with recurrent glioma who had refractory seizures despite multiple anti-epileptic agents, who had significant benefit with CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/31848037

“CBD could potentially be a management option in treatment-refractory epilepsy in glioma patients.”

https://www.jocn-journal.com/article/S0967-5868(19)31306-2/fulltext

Beta-caryophyllene enhances wound healing through multiple routes.

 Image result for plos one“Beta-caryophyllene is an odoriferous bicyclic sesquiterpene found in various herbs and spices.

Recently, it was found that beta-caryophyllene is a ligand of the cannabinoid receptor 2 (CB2). Activation of CB2 will decrease pain, a major signal for inflammatory responses.

We hypothesized that beta-caryophyllene can affect wound healing by decreasing inflammation. Here we show that cutaneous wounds of mice treated with beta-caryophyllene had enhanced re-epithelialization.

The treated tissue showed increased cell proliferation and cells treated with beta-caryophyllene showed enhanced cell migration, suggesting that the higher re-epithelialization is due to enhanced cell proliferation and cell migration. The treated tissues also had up-regulated gene expression for hair follicle bulge stem cells. Olfactory receptors were not involved in the enhanced wound healing. Transient Receptor Potential channel genes were up-regulated in the injured skin exposed to beta-caryophyllene. Interestingly, there were sex differences in the impact of beta- caryophyllene as only the injured skin of female mice had enhanced re-epithelialization after exposure to beta-caryophyllene.

Our study suggests that chemical compounds included in essential oils have the capability to improve wound healing, an effect generated by synergetic impacts of multiple pathways.”

https://www.ncbi.nlm.nih.gov/pubmed/31841509

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216104

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Sleep and Neurochemical Modulation by Cannabidiolic Acid Methyl Ester in Rats.

Brain Research Bulletin“Cannabidiolic acid methyl ester (HU-580) is a more stable compound than cannabidiolic acid (CBDA) which has been shown to be effective in reducing nausea, anxiety, depression behaviors in animal models.

Here we extend the investigation of this compound to determine its effect on the sleep-wake cycle in male Wistar rats.

HU-580 dose-dependently (0.1, 1.0 or 100 µg/Kg, i.p.) prolonged wakefulness (W) and decreased slow wave sleep (SWS) duration whereas rapid eye movement sleep (REMS) showed no statistical change. In addition, the brain microdialysis probes either placed at nucleus accumbens (NAc) or into the basal forebrain in freely moving animals were used to evaluate the effects of HU-580 treatment on neurotransmitters related to the sleep-wake cycle modulation. HU-580 enhanced extracellular levels of dopamine, serotonin collected from NAc while adenosine and acetylcholine were increased in basal forebrain.

In summary, HU-580 seems to possess wake-promoting pharmacological properties and enhances the levels of wake-related neurochemicals. This is the first report of effects of HU-580 on sleep modulation expanding the very limited existent data on the neurobiological effects of HU-580 on rats.”

https://www.ncbi.nlm.nih.gov/pubmed/31838151

https://www.sciencedirect.com/science/article/abs/pii/S0361923019306306?via%3Dihub

Exploiting cannabinoid and vanilloid mechanisms for epilepsy treatment.

“This review focuses on the possible roles of phytocannabinoids, synthetic cannabinoids, endocannabinoids, and “transient receptor potential cation channel, subfamily V, member 1” (TRPV1) channel blockers in epilepsy treatment.

The phytocannabinoids are compounds produced by the herb Cannabis sativa, from which Δ9-tetrahydrocannabinol (Δ9-THC) is the main active compound. The therapeutic applications of Δ9-THC are limited, whereas cannabidiol (CBD), another phytocannabinoid, induces antiepileptic effects in experimental animals and in patients with refractory epilepsies.

Synthetic CB1 agonists induce mixed effects, which hamper their therapeutic applications. A more promising strategy focuses on compounds that increase the brain levels of anandamide, an endocannabinoid produced on-demand to counteract hyperexcitability. Thus, anandamide hydrolysis inhibitors might represent a future class of antiepileptic drugs. Finally, compounds that block the TRPV1 (“vanilloid”) channel, a possible anandamide target in the brain, have also been investigated.

In conclusion, the therapeutic use of phytocannabinoids (CBD) is already in practice, although its mechanisms of action remain unclear. Endocannabinoid and TRPV1 mechanisms warrant further basic studies to support their potential clinical applications.”

https://www.ncbi.nlm.nih.gov/pubmed/31839498

“Cannabidiol is in clinical use for refractory epilepsies.”

https://www.epilepsybehavior.com/article/S1525-5050(19)30373-7/fulltext

The influence of carboxylesterase 1 polymorphism and cannabidiol on the hepatic metabolism of heroin.

Chemico-Biological Interactions“Heroin (diamorphine) is a highly addictive opioid drug synthesized from morphine. The use of heroin and incidence of heroin associated overdose death has increased sharply in the US.

Heroin is primarily metabolized via deacetylation (hydrolysis) forming the active metabolites 6-monoacetylmorphine (6-MAM) and morphine. A diminution in heroin hydrolysis is likely to cause higher drug effects and toxicities.

In this study, we sought to determine the contribution of the major hepatic hydrolase carboxylesterase 1 (CES1) to heroin metabolism in the liver as well as the potential influence of one of its known genetic variants, G143E (rs71647871).

Furthermore, given the potential therapeutic application of cannabidiol (CBD) for heroin addiction and the frequent co-abuse of cannabis and heroin, we also assessed the effects of CBD on heroin metabolism.

CBD exhibited potent in vitro inhibition toward both heroin and 6-MAM hydrolysis, which may be of potential clinical relevance.”

https://www.ncbi.nlm.nih.gov/pubmed/31837295

“Cannabidiol is a potent in vitro inhibitor of the two-step hydrolysis of heroin.”

https://www.sciencedirect.com/science/article/abs/pii/S0009279719317259?via%3Dihub