Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids.

 Image result for Front Mol Neurosci

“Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis.

In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis.

Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers.

Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes.

The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect.

While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations.”

https://www.ncbi.nlm.nih.gov/pubmed/28174520

http://journal.frontiersin.org/article/10.3389/fnmol.2017.00014/full

Use of medical cannabis to reduce pain and improve quality of life in cancer patients.

Image result for Journal of Clinical Oncology

“Early attention to pain and symptoms in those with cancer improves both quality of life and survival. Opioid medications are the mainstay treatment of cancer-related pain.

Cannabinoids are increasingly used as adjunctive treatments for cancer pain, but clinical evidence supporting their use as an “opioid sparing agent” or to improve quality of life is as yet unknown. Our study sought to determine if the addition of cannabinoids (medical cannabis) resulted in the reduction of the average opioid dose required for pain control, and improve self-reported quality of life indices.

CONCLUSIONS:

Patients with cancer pain benefited from the addition of cannabinoids. The average opioid dose decreased following access to medical cannabis. Self-reported ratings of several quality of life indicators showed statistically significant improvement. Our study shows a signal that cannabinoids may reduce cancer patients’ reliance on opioids to control pain. Further prospective controlled studies are needed to further elucidate the role of cannabinoids in the treatment of cancer pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28148191

Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells.

Image result for Toxicology in Vitro

“The role of endocannabinoid system in melanoma development and progression is actually not fully understood.

This study was aimed at clarifying whether cannabinoid-type 1 (CB1) receptor may function as tumor-promoting or -suppressing signal in human cutaneous melanoma.

Findings of this study suggest that CB1 receptor might function as tumor-promoting signal in human cutaneous melanoma.”

https://www.ncbi.nlm.nih.gov/pubmed/28131817

“Antitumor effects of THC.” http://www.ncbi.nlm.nih.gov/pubmed/11097557
“Cannabinoids (CB) like ∆9-tetrahydrocannabinol (THC) can induce cancer cell apoptosis and inhibit angiogenesis. Our results confirm the value of exogenous cannabinoids for the treatment of melanoma” http://www.ncbi.nlm.nih.gov/pubmed/25921771

Cannabinoids – a new weapon against cancer?

Image result for Postepy Hig Med Dosw (Online).

“Cannabis has been cultivated by man since Neolithic times. It was used, among others for fiber and rope production, recreational purposes and as an excellent therapeutic agent.

The isolation and characterization of the structure of one of the main active ingredients of cannabis – Δ9 – tetrahydrocannabinol as well the discovery of its cannabinoid binding receptors CB1 and CB2, has been a milestone in the study of the possibilities of the uses of Cannabis sativa and related products in modern medicine.

Many scientific studies indicate the potential use of cannabinoids in the fight against cancer.

Experiments carried out on cell lines in vitro and on animal models in vivo have shown that phytocannabinoids, endocannabinoids, synthetic cannabinoids and their analogues can lead to inhibition of the growth of many tumor types, exerting cytostatic and cytotoxic neoplastic effect on cells thereby negatively influencing neo-angiogenesis and the ability of cells to metastasize.

The main molecular mechanism leading to inhibition of proliferation of cancer cells by cannabinoids is apoptosis. Studies have shown, however, that the process of apoptosis in cells, treated with recannabinoids, is a consequence of induction of endoplasmic reticulum stress and autophagy. On the other hand, in the cellular context and dosage dependence, cannabinoids may enhance the proliferation of tumor cells by suppressing the immune system or by activating mitogenic factors.

Leading from this there is a an obvious need to further explore cannabinoid associated molecular pathways making it possible to develop safe therapeutic drug agents for patients in the future.”

Therapeutic potential of cannabinoids in counteracting chemotherapy-induced adverse effects: an exploratory review.

Image result for Phytother Res.

“Cannabinoids (the active constituents of Cannabis sativa) and their derivatives have got intense attention during recent years because of their extensive pharmacological properties. Cannabinoids first developed as successful agents for alleviating chemotherapy associated nausea and vomiting. Recent investigations revealed that cannabinoids have a wide range of therapeutic effects such as appetite stimulation, inhibition of nausea and emesis, suppression of chemotherapy or radiotherapy-associated bone loss, chemotherapy-induced nephrotoxicity and cardiotoxicity, pain relief, mood amelioration, and last but not the least relief from insomnia. In this exploratory review, we scrutinize the potential of cannabinoids to counteract chemotherapy-induced side effects. Moreover, some novel and yet important pharmacological aspects of cannabinoids such as antitumoral effects will be discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/25504799

A user’s guide to cannabinoid therapies in oncology.

Image result for Curr Oncol

“”Cannabinoid” is the collective term for a group of chemical compounds that either are derived from the Cannabis plant, are synthetic analogues, or occur endogenously.

Although cannabinoids interact mostly at the level of the currently recognized cannabinoid receptors, they might have cross reactivity, such as at opioid receptors.

Patients with malignant disease represent a cohort within health care that have some of the greatest unmet needs despite the availability of a plethora of guideline-driven disease-modulating treatments and pain and symptom management options.

Cannabinoid therapies are varied and versatile, and can be offered as pharmaceuticals (nabilone, dronabinol, and nabiximols), dried botanical material, and edible organic oils infused with cannabis extracts. Cannabinoid therapy regimens can be creative, involving combinations of all of the aforementioned modalities.

Patients with malignant disease, at all points of their disease trajectory, could be candidates for cannabinoid therapies whether as monotherapies or as adjuvants.

The most studied and established roles for cannabinoid therapies include pain, chemotherapy-induced nausea and vomiting, and anorexia.

Moreover, given their breadth of activity, cannabinoids could be used to concurrently optimize the management of multiple symptoms, thereby reducing overall polypharmacy.

The use of cannabinoid therapies could be effective in improving quality of life and possibly modifying malignancy by virtue of direct effects and in improving compliance or adherence with disease-modulating treatments such as chemotherapy and radiation therapy.”  https://www.ncbi.nlm.nih.gov/pubmed/28050136

“The Cannabis plant has a long and colourful history that spans more than 5000 years of world history and human usage. In contemporary times, the term “cannabis” has commonly been supplanted by the more colloquial term “marijuana” (also spelled “marihuana”). An extremely versatile and easily cultivatable plant, Cannabis was used by ancient cultures for food, fibre, and medicinal purposes. The integration and broader utilization of cannabinoid therapies within the domain of oncology (including palliation) carries the potential not only for improved health care outcomes for patients but also for economic savings and greater safety for society. Patient reports of improvement in quality of life, especially for those undergoing intensive treatment regimens, could be key to patients continuing with lifesaving or life-prolonging therapies.”   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176373/

Experts’ Perspectives on the Role of Medical Marijuana in Oncology: a semi-structured interview study.

Image result for Psycho Oncology

“Expansion of medical marijuana (MM) laws in the United States may offer oncology new therapeutic options.

This study qualitatively explored professional opinion around the role of MM in cancer care.

Expert opinion was divided between conviction in marijuana’s medicinal potential to guardedness in this assertion, with no participant refuting MM’s utility outright.

Emergent themes included: that MM ameliorates cancer-related pain and nausea and is safer than certain conventional medications.

Participants called for enhanced purity and production standards, and further research on MM’s utility.”

https://www.ncbi.nlm.nih.gov/pubmed/28040884

Medical Cannabis in the Palliation of Malignant Wounds—A Case Report

Image result for journal of pain and symptom management

“Anecdotal accounts of the use of topical extracts from the cannabis plant being used on open wounds date back to antiquity. In modern times, cannabinoid therapies have demonstrated efficacy as analgesic agents in both pharmaceutical and botanical formats. Medical cannabis (MC), also known as medical marijuana,…

The endogenous cannabinoid system, consisting of cannabinoid receptors and their endogenous ligands, is ubiquitous throughout the human bodyAvailable research shows that cancer cells express higher levels of the cannabinoid receptors, CB1 and CB2, relative to their noncancer counterparts, while also demonstrating an overall state of upregulationHuman in vitro studies, using nonmelanoma skin lines, have demonstrated direct induction of tumor cell apoptosis and inhibition of tumor-related angiogenesis, both by way of activation of cannabinoid receptors.

The analgesic outcomes observed in this case are supported by the results of a recent systematic review and meta-analysis of cannabinoids for medical useUnlike intact skin, which is polar and hydrophilic, wounds lack epithelial coverage and are nonpolar and lipophilic. Therefore, lipophilic compounds such as the THC and CBD cannabinoids may be readily absorbed through cutaneous wounds.

Before the use of topical MC oil, the patient’s wound was growing rapidly. Yet, after a few weeks, a modest regression of his malignant wound was observed while the patient used topical MC. This secondary outcome suggests that topical MC may promote antineoplastic activity as per the findings of Casanova et al.

In summary, this is the first case report to demonstrate the potential for MC to provide effective pain and symptom management in the setting of malignant wounds. The rapid onset of analgesia after topical placement suggests that the effects were mediated through absorption of the THC and CBD cannabinoids that subsequently interacted with peripheral nociceptors, immune cells, and cancer cells. The postapplication analgesia may be because of the gastrointestinal absorption of ingested residual MC oil. This case suggests that MC delivered in vaporized and topical oil formats warrants further investigation in human malignancy, including randomized controlled trials capable of establishing long-term efficacy, optimal dosage, schedules of administration, mixture composition, and safety.”

http://www.jpsmjournal.com/article/S0885-3924(16)30328-1/fulltext

“Can Cannabis Oil Help Heal Wounds?”                              http://www.livescience.com/57500-can-medical-cannabis-help-heal-wounds.html

“Oral cancer patient, 44, claims cannabis oil helped to shrink a hole in his cheek that was caused by the disease” http://www.dailymail.co.uk/health/article-4124752/Oral-cancer-patient-44-claims-cannabis-oil-helped-shrink-hole-cheek-caused-disease.html

“Miracle plant: Can medical marijuana heal wounds?” http://www.nydailynews.com/life-style/medical-marijuana-heal-wounds-article-1.3384572

“Cannabis Oil Shows Potential To Heal Cancer Wounds Fast”  http://www.healthaim.com/cannabis-oil-shows-potential-heal-cancer-wounds-fast/71395

Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

Image result for The Journal of Nutritional Biochemistry

“Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer.

The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO.

Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may provide a new therapeutic avenue for treatment and/or prevention of colon cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/25533906

Dietary olive oil induces cannabinoid CB2 receptor expression in adipose tissue of ApcMin/+ transgenic mice.

Image result for j nutr health aging journal

“Cannabinoid– 2 (CB2) receptor is known for its anti-obesity effects silencing the activated immune cells that are key drivers of metabolic syndrome and inflammation.

Nutritional interventions in experimental models of carcinogenesis have been demonstrated to modulate tissue inflammation state and proliferation.

OBJECTIVE: Aim of this study was to test, in ApcMin/+ mice, whether a diet enriched with olive oil, omega- 3 and omega-6- PUFAs affects the adipose tissue inflammation status.

RESULTS: The diet enriched with olive oil significantly induced CB2 receptor expression and it was able to control inflammatory and proliferative activity of mice adipose tissue.

CONCLUSIONS: The present findings open opportunities for developing novel nutritional strategies considering olive oil a key ingredient of a healthy dietary pattern.”