Targeting CB2-GPR55 Receptor Heteromers Modulates Cancer Cell Signaling.

“The G protein-coupled receptors CB2 (CB2R) and GPR55 are overexpressed in cancer cells and human tumors. As a modulation of GPR55 activity by cannabinoids has been suggested, we analyzed whether this receptor participates in cannabinoid effects on cancer cells.

Here, we show that CB2R and GPR55 form heteromers in cancer cells, that these structures possess unique signaling properties, and that modulation of these heteromers can modify the antitumoral activity of cannabinoids in vivo.

These findings unveil the existence of previously unknown signaling platforms that help explain the complex behavior of cannabinoids and may constitute new targets for therapeutic intervention in oncology.”

http://www.ncbi.nlm.nih.gov/pubmed/24942731

http://www.thctotalhealthcare.com/category/cancer/

Cannabinoid CB2 Receptor as a New Phototherapy Target for the Inhibition of Tumor Growth.

“The success of targeted cancer therapy largely relies upon the selection of target and the development of efficient therapeutic agents that specifically bind to the target. In the current study, we chose a cannabinoid CB2 receptor (CB2R) as a new target and used a CB2R-targeted photosensitizer, IR700DX-mbc94, for phototherapy treatment…

Taken together, IR700DX-mbc94 is a promising phototherapy agent with high target-specificity. Moreover, CB2R appears to have great potential as a phototherapeutic target for cancer treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/24779700

“Target-selective phototherapy using a ligand-based photosensitizer for type 2 cannabinoid receptor. Phototherapy is a powerful, noninvasive approach for cancer treatment, with several agents currently in clinical use… We show that our CB2R-targeted phototherapy agent, IR700DX-mbc94, is specific for CB2R and effective only when bound to the target receptor. Overall, this opens up the opportunity for development of an alternative treatment option for CB2R-positive cancers.”  http://www.ncbi.nlm.nih.gov/pubmed/24583052

Targeting multiple cannabinoid antitumor pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer.

“The psychoactive cannabinoid Δ9 -tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol(CBD) can both reduce cancer progression each through distinct antitumor pathways.

Our goal was to discover a compound that could efficiently target both cannabinoid antitumor pathways.

KEY RESULTS:

CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogs that could co-target cannabinoid antitumor pathways (CBD- and THC-associated) and discovered the compound O-1663. This analog inhibited Id1, produced a marked stimulation of ROS, upregulated autophagy, and induced apoptosis. Of all compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo.

CONCLUSIONS AND IMPLICATIONS:

O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid antitumor pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/24910342

“Anti-cancer effects of resorcinol derivatives on ascitic and solid forms of Ehrlich carcinoma in mice.” http://www.ncbi.nlm.nih.gov/pubmed/13774935

“Ardisiphenol D, a resorcinol derivative identified from Ardisia brevicaulis, exerts antitumor effect through inducing apoptosis in human non-small-cell lung cancer A549 cells.” http://www.ncbi.nlm.nih.gov/pubmed/24392814

“Antitumor effect of resorcinol derivatives from the roots of Ardisia brevicaulis by inducing apoptosis.” http://www.ncbi.nlm.nih.gov/pubmed/21751842

“Resorcinol derivatives from Ardisia maculosa.”  http://www.ncbi.nlm.nih.gov/pubmed/17885843

“Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions.” https://www.ncbi.nlm.nih.gov/pubmed/28412918

http://www.thctotalhealthcare.com/category/breast-cancer/

Study: Marijuana Appears to Slow Cancer Growth in Laboratory Setting -FOXNEWS

“Certain marijuana components may suppress the tumors of highly invasive cancers, a new study finds.

In laboratory tests, cannabinoids, the active components in marijuana, were found to slow the spread of lung and cervical cancer tumors, according to researchers Robert Ramer and Burkhard Hinz of the University of Rostock in Germany.

Proponents of medical marijuana believe that cannabinoids reduce the side effects of cancer treatment, such as pain, weight loss and vomiting.

The study, published in the Jan. 2 issue of the Journal of the National Cancer Institute, finds that the compounds may also have an anticancer effect;

Click here for the study.

In addition to suppressing tumor cell invasion, cannabinoids also stimulated the expression of TIMP-1, an inhibitor of a group of enzymes involved in tumor cell invasion.

“To our knowledge, this is the first report of TIMP-1-dependent anti-invasive effects of cannabinoids,” the authors wrote. “This signaling pathway may play an important role in the antimetastatic action of cannabinoids, whose potential therapeutic benefit in the treatment of highly invasive cancers should be addressed in clinical trials.””

https://www.foxnews.com/story/study-marijuana-appears-to-slow-cancer-growth-in-laboratory-setting

“Inhibition of Cancer Cell Invasion by Cannabinoids via Increased Expression of Tissue Inhibitor of Matrix Metalloproteinases-1. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.” https://academic.oup.com/jnci/article/100/1/59/2567700

Cannabidiol (CBD) Shown To Kill Breast Cancer Cells -Cafemom

“Cannabidiol (CBD) has been on the receiving end of a lot of attention from the scientific community for several decades now.

However, it is only now that we are really starting to begin to get a grasp on how wonderful this cannabinoid truly is.

study from 2011 states that cannabidiol is considered an antineoplastic agent on the basis of its in vitro and in vivo activity against tumor cells. However, the exact molecular mechanism through which CBD works in this capacity is yet to be understood. The study, titled “Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy,” focuses on how CBD can kill breast cancer cells. Breast cancer is the second leading cause of cancer-related death in women in the United States.

What the scientists found was that CBD influences apoptosis by interacting with a key protein, called beclin-1, found within the cancerous cell. Beclin-1 is also known to play a key role in autophagy, or cellular self-degradation of non-vital components, which may lead to programmed cell death. This causes a distortion of the electrical signals between the outer mitochondrial membrane and the rest of the cell, disrupting the transfer to the cell interior of certain molecules that are necessary for metabolism. What this means is that the cell cannot transfer energy, and the cell starves to death, and in doing so activates the self-destruction process of apoptosis.

The study concludes by stating, “In summary, we showed that CBD, a plant-derived cannabinoid, preferentially kills breast cancer cells by inducing ER stress, inhibiting mTOR signaling, enhancing ROS generation, and mediating a complex balance between autophagy and mitochondria-mediated apoptosis in MDA-MB-231 breast cancer cells. These findings support the continued exploration of CBD as an alternative agent for breast cancer treatment.””

http://www.cafemom.com/group/99198/forums/read/19190923/Cannabidiol_CBD_Shown_To_Kill_Breast_Cancer_Cells

“Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy… In summary, we showed that CBD, a plant-derived cannabinoid, preferentially kills breast cancer cells…” http://mct.aacrjournals.org/content/10/7/1161.full

http://www.thctotalhealthcare.com/category/breast-cancer/

CBD-Rich Marijuana Fights Colon Cancer, New Study Finds

“In 2008, over one million individuals were diagnosed with colon cancer, also known as colorectal cancer or bowel cancer and it caused over 600,000 deaths globally. The results of a study published in the journal Phytomedicine in October 2013 suggest that a botanical extract made from high-CBD (cannabidiol) cannabis can selectively target colon cancer cells, while leaving healthy cells unharmed.

Researchers were able to reduce tumor growth and pre-cancerous lesions in mice with colon cancer using the pot molecule CBD as part of a “botanical drug substance”. The authors believe that CBD’s benefits as demonstrated by the results of the study could have clinical relevance for the use of cannabis-based medicines in cancer patients.

Current colon cancer treatments are not only very toxic but also fail to prevent the progression of the disease in some patients. Disease incidence and mortality have not reduced using screening strategies for colon cancer.

Researchers have made progress in investigating cannabis as a treatment for breast and brain cancers considering its antiproliferative CB1 and CB2-mediated effects in colorectal cancer cells and action in experimental models of colon cancer. The study was partially funded through grants from GW Pharmaceuticals and lead by researchers from Italy and the UK.”

http://blog.sfgate.com/smellthetruth/2014/01/06/cbd-rich-marijuana-fights-colon-cancer-new-study-finds/

“Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol” http://www.ncbi.nlm.nih.gov/pubmed/24373545

http://www.thctotalhealthcare.com/category/colon-cancer/

The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells.

“…there is considerable interest in therapeutics that can modulate survival signalling pathways and target cancer cells for death. There is emerging evidence that cannabinoids, especially Delta(9)-tetrahydrocannabinol (THC), may represent novel anticancer agents, due to their ability to regulate signalling pathways critical for cell growth and survival.

Here, we report that CB1 and CB2 cannabinoid receptors are expressed in human colorectal adenoma and carcinoma cells, and show for the first time that THC induces apoptosis in colorectal cancer cells…

The use of THC, or selective targeting of the CB1 receptor, may represent a novel strategy for colorectal cancer therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/17583570

http://www.thctotalhealthcare.com/category/colon-cancer/

Prophylactic cannabinoid administration blocks the development of paclitaxel-induced neuropathic nociception during analgesic treatment and following cessation of drug delivery.

“Chemotherapeutic treatment results in chronic pain in an estimated 30-40 percent of patients. Limited and often ineffective treatments make the need for new therapeutics an urgent one. We compared the effects of prophylactic cannabinoids as a preventative strategy for suppressing development of paclitaxel-induced nociception…

Our results support the therapeutic potential of cannabinoids for suppressing chemotherapy-induced neuropathy in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/24742127

http://www.thctotalhealthcare.com/category/neuropathic-pain/

[Therapeutic use of cannabis derivatives].

“The therapeutic use of cannabis has generated a lot of interest in the past years, leading to a better understanding of its mechanisms of action…

Cannabinoids such as dronabinol, Sativex and nabilone have been tested for the treatment of acute and chronic pain. These agents are most promising to relieve chronic pain associated with cancer, with human immunodeficiency virus infection and with multiple sclerosis…”

http://www.ncbi.nlm.nih.gov/pubmed/24701869