EHP-101, an oral formulation of the cannabidiol aminoquinone VCE-004.8, alleviates bleomycin-induced skin and lung fibrosis.

Elsevier

“Systemic sclerosis (SSc) or scleroderma is a chronic multi-organ autoimmune disease characterized by vascular, immunological, and fibrotic abnormalities.

The etiology of SSc is unknown, but there is growing evidence that dysfunction of the endocannabinoid system (ECS) plays a critical role in its development.

Since the semi-synthetic cannabinoquinoid VCE-004.8 could alleviate bleomycin (BLM)-induced skin fibrosis, we have investigated an oral lipid formulation (EHP-101) of this dual PPARγ/CB2 receptors activator for the prevention of skin- and lung fibrosis and of collagen accumulation in BLM challenged mice.

Taken together, these data provide a rationale for further developing VCE-004.8 as an orally active agent to alleviate scleroderma and, possibly, other fibrotic diseases as well.”

Effect of chronic THC administration in the reproductive organs of male mice, spermatozoa and in vitro fertilization.

Biochemical Pharmacology

“The increased use of cannabis as a therapeutic drug in recent years has raised some concerns due to its potential effects on reproductive health. With regards to the male, the endocannabinoid system is involved in the spermatogenesis and in the sperm function.

The chronic use of tetrahidrocannabinol (THC) has been associated with sperm anomalies, decreased sperm motility and structural changes in the testis. However, whether THC affects sperms ability to fertilize and to generate embryos remains unclear.

The aim of this study was to evaluate this effect using a mice model of THC chronic treatment. For this purpose, a chronic treatment with THC was carried out. Mice were randomly allocated into two groups: an experimental group treated with a daily dose of 10 mg/kg-body weight THC for a period of 30 days and a control group treated with a vehicle.

The THC-mice cortex showed a significant decrease of mRNA of Cnr1 compared to control-mice while, in the testis, the expression of Cnr1 was not affected. The weight of testis and epididymis and the histological analysis did not show any change between groups.

On the other hand, no changes were observed in the sperm motility or the sperm concentration. The chronic use of THC did not generate any methylation change in the three CpG regions of Cnn1 analysed, neither in the brain nor in the embryos generated by in vitro fertilization (IVF).

Finally, the embryo production by IVF was no different using spermatozoa from both THC and control mice. This work contradicts the belief that THC consumption has a negative effect on male reproductive processes.”

Cannabinoid pharmacology and therapy in gut disorders.

Biochemical Pharmacology

“Cannabis sp and their products (marijuana, hashish…), in addition to their recreational, industrial and other uses, have a long history for their use as a remedy for symptoms related with gastrointestinal diseases.

After many reports suggesting these beneficial effects, it was not surprising to discover that the gastrointestinal tract expresses endogenous cannabinoids, their receptors, and enzymes for their synthesis and degradation, comprising the so-called endocannabinoid system.

This system participates in the control of tissue homeostasis and important intestinal functions like motor and sensory activity, nausea, emesis, the maintenance of the epithelial barrier integrity, and the correct cellular microenvironment. Thus, different cannabinoid-related pharmacological agents may be useful to treat the main digestive pathologies.

To name a few examples, in irritable bowel syndrome they may normalize dysmotility and reduce pain, in inflammatory bowel disease they may decrease inflammation, and in colorectal cancer, apart from alleviating some symptoms, they may play a role in the regulation of the cell niche.

This review summarizes the main recent findings on the role of cannabinoid receptors, their synthetic or natural ligands and their metabolizing enzymes in normal gastrointestinal function and in disorders including irritable bowel syndrome, inflammatory bowel disease, colon cancer and gastrointestinal chemotherapy-induced adverse effects (nausea/vomiting, constipation, diarrhea).”

Brain activity of anandamide: a rewarding bliss?

 

Image result for aps acta pharmacologica

“Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa.

Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse.

Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse.

In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.”

Emerging strategies targeting cb2 cannabinoid receptor: biased agonism and allosterism.

Biochemical Pharmacology

“During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.”

Chronic treatment with the phytocannabinoid Cannabidivarin (CBDV) rescues behavioural alterations and brain atrophy in a mouse model of Rett syndrome.

Neuropharmacology

“Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. RTT is caused by mutations in the MECP2 gene in about 95% of cases and to date no cure is available.

The endocannabinoid system modulates several physiological processes and behavioural responses that are impaired in RTT and its deregulation has been associated with neuropsychiatric disorders which have symptoms in common with RTT.

The present study evaluated the potential therapeutic efficacy for RTT of cannabidivarin (CBDV), a non-psychotropic phytocannabinoid from Cannabis sativa that presents antagonistic properties on the G protein-coupled receptor 55 (GPR55), the most recently identified cannabinoid receptor.

Present results demonstrate that systemic treatment with CBDV (2, 20, 100 mg/Kg ip for 14 days) rescues behavioural and brain alterations in MeCP2-308 male mice, a validated RTT model. The CBDV treatment restored the compromised general health status, the sociability and the brain weight in RTT mice. A partial restoration of motor coordination was also observed. Moreover, increased levels of GPR55 were found in RTT mouse hippocampus, suggesting this G protein-coupled receptor as new potential target for the treatment of this disorder.

Present findings highlight for the first time for RTT the translational relevance of CBDV, an innovative therapeutic agent that is under active investigation in the clinical setting.”

VCE-004.3, A CANNABIDIOL AMINOQUINONE DERIVATIVE, PREVENTS BLEOMYCIN-INDUCED SKIN FIBROSIS AND INFLAMMATION TROUGH PPARγ- AND CB2 -DEPENDENT PATHWAYS.

Publication cover image

“The endocannabinoid system (ECS) as well as PPARγ are relevant targets for the development of novel compounds against fibrotic diseases such as Systemic Sclerosis (SSc), also called Scleroderma.

The aim of this study was to characterize VCE-004.3, a novel cannabidiol derivative, and to study it anti-inflammatory and anti-fibrotic activities.

CONCLUSION AND IMPLICATIONS:

VCE-004.3 is a novel semi-synthetic cannabidiol derivative behaving as a dual PPARγ/CB2 agonist and CB1 receptor modulator that could be considered for the development of novel therapies against different forms of Scleroderma.”

https://www.ncbi.nlm.nih.gov/pubmed/30033591

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14450

Endocannabinoid system, Stress and HPA axis.

European Journal of Pharmacology

“The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana’s psychoactive ingredient ∆9-tetrahydrocannabinol (∆9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors. In addition to its recreational actions, some of the earliest reports regarding the effects of Cannabis use on humans were related to endocrine system changes. Accordingly, the ∆9-THC and later on, the ECS signaling have long been known to regulate the hypothalamic-pituitary-adrenocortical (HPA) axis, which is the major neuroendocrine stress response system of mammals. However, how the ECS could modify the stress hormone secretion is not fully understood. Thus, the present article reviews current available knowledge on the role of the ECS signaling as important mediator of interaction between HPA axis activity and stressful conditions, which, in turn could be involved in the development of psychiatric disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/30036537

https://www.sciencedirect.com/science/article/pii/S0014299918304138?via%3Dihub

Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues.

antioxidants-logo

“Growing evidence supports the pivotal role played by oxidative stress in tissue injury development, thus resulting in several pathologies including cardiovascular, renal, neuropsychiatric, and neurodegenerative disorders, all characterized by an altered oxidative status. Reactive oxygen and nitrogen species and lipid peroxidation-derived reactive aldehydes including acrolein, malondialdehyde, and 4-hydroxy-2-nonenal, among others, are the main responsible for cellular and tissue damages occurring in redox-dependent processes.

In this scenario, a link between the endocannabinoid system (ECS) and redox homeostasis impairment appears to be crucial. Anandamide and 2-arachidonoylglycerol, the best characterized endocannabinoids, are able to modulate the activity of several antioxidant enzymes through targeting the cannabinoid receptors type 1 and 2 as well as additional receptors such as the transient receptor potential vanilloid 1, the peroxisome proliferator-activated receptor alpha, and the orphan G protein-coupled receptors 18 and 55.

Moreover, the endocannabinoids lipid analogues N-acylethanolamines showed to protect cell damage and death from reactive aldehydes-induced oxidative stress by restoring the intracellular oxidants-antioxidants balance. In this review, we will provide a better understanding of the main mechanisms triggered by the cross-talk between the oxidative stress and the ECS, focusing also on the enzymatic and non-enzymatic antioxidants as scavengers of reactive aldehydes and their toxic bioactive adducts.”

Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons.

 Neuropharmacology

“Endogenous cannabinoids are diffusible lipid ligands of the main cannabinoid receptors type 1 and 2 (CB1R and CB2R). In the central nervous system endocannabinoids are produced in an activity-dependent manner and have been identified as retrograde modulators of synaptic transmission.

Additionally, some neurons display a cell-autonomous slow self-inhibition (SSI) mediated by endocannabinoids. In these neurons, repetitive action potential firing triggers the production of endocannabinoids, which induce a long-lasting hyperpolarization of the membrane potential, rendering the cells less excitable. Different endocannabinoid receptors and effector mechanisms have been described underlying SSI in different cell types and brain areas.

Here, we investigate SSI in neurons of layer 2/3 in the somatosensory cortex. High-frequency bursts of action potentials induced SSI in pyramidal cells (PC) and regular spiking non-pyramidal cells (RSNPC), but not in fast-spiking interneurons (FS). In RSNPCs the hyperpolarization was accompanied by a change in input resistance due to the activation of G protein-coupled inward-rectifying K+ (GIRK) channels. A CB2R-specific agonist induced the long-lasting hyperpolarization, whereas preincubation with a CB2R-specific inverse agonist suppressed SSI. Additionally, using cannabinoid receptor knockout mice, we found that SSI was still intact in CB1R-deficient but abolished in CB2R-deficient mice.

Taken together, we describe an additional SSI mechanism in which the activity-induced release of endocannabinoids activates GIRK channels via CB2Rs. These findings expand our knowledge about cell type-specific differential neuronal cannabinoid receptor signaling and suggest CB2R-selective compounds as potential therapeutic approaches.”

https://www.ncbi.nlm.nih.gov/pubmed/30025920

https://www.sciencedirect.com/science/article/pii/S0028390818303885?via%3Dihub