Cannabinoids, inflammation, and fibrosis.

Image result for FASEB J.

“Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs).

As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis.

A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented.

The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed.

The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances.

Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents.

Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.”

https://www.ncbi.nlm.nih.gov/pubmed/27435265

Role of cannabis in digestive disorders.

Image result for European Journal of Gastroenterology & Hepatology

“Cannabis sativa, a subspecies of the Cannabis plant, contains aromatic hydrocarbon compounds called cannabinoids.

Tetrahydrocannabinol is the most abundant cannabinoid and is the main psychotropic constituent.

Cannabinoids activate two types of G-protein-coupled cannabinoid receptors: cannabinoid type 1 receptor and cannabinoid type 2 receptor.

There has been ongoing interest and development in research to explore the therapeutic potential of cannabis. Tetrahydrocannabinol exerts biological functions on the gastrointestinal (GI) tract.

Cannabis has been used for the treatment of GI disorders such as abdominal pain and diarrhea.

The endocannabinoid system (i.e. endogenous circulating cannabinoids) performs protective activities in the GI tract and presents a promising therapeutic target against various GI conditions such as inflammatory bowel disease (especially Crohn’s disease), irritable bowel syndrome, and secretion and motility-related disorders.

The present review sheds light on the role of cannabis in the gut, liver, and pancreas and also on other GI symptoms, such as nausea and vomiting, cannabinoid hyperemesis syndrome, anorexia, weight loss, and chronic abdominal pain.

Although the current literature supports the use of marijuana for the treatment of digestive disorders, the clinical efficacy of cannabis and its constituents for various GI disorders remains unclear.”

https://www.ncbi.nlm.nih.gov/pubmed/27792038

Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis.

Image result for plos one

“Enteric glial cells (EGC) actively mediate acute and chronic inflammation in the gut; EGC proliferate and release neurotrophins, growth factors, and pro-inflammatory cytokines which, in turn, may amplify the immune response, representing a very important link between the nervous and immune systems in the intestine.

Cannabidiol (CBD) is an interesting compound because of its ability to control reactive gliosis in the CNS, without any unwanted psychotropic effects.

Therefore the rationale of our study was to investigate the effect of CBD on intestinal biopsies from patients with ulcerative colitis (UC) and from intestinal segments of mice with LPS-induced intestinal inflammation.

Our results therefore indicate that CBD indeed unravels a new therapeutic strategy to treat inflammatory bowel diseases.

The results of the present study correlate and expand the findings suggesting CBD as a potent compound that is able to modulate experimental gut inflammation.

In this study we demonstrate that during intestinal inflammation, CBD is able to control the inflammatory scenario and the subsequent intestinal apoptosis through the restoration of the altered glia-immune homeostasis.

CBD is therefore regarded as a promising therapeutic agent that modulates the neuro-immune axis, which can be recognised as a new target in the treatment of inflammatory bowel disorders.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232190/

An Orally Active Cannabis Extract with High Content in Cannabidiol attenuates Chemically-induced Intestinal Inflammation and Hypermotility in the Mouse.

Image result for Front Pharmacol.

“Anecdotal and scientific evidence suggests that Cannabis use may be beneficial in inflammatory bowel disease (IBD) patients.

Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS for “CBD botanical drug substance,” on mucosal inflammation and hypermotility in mouse models of intestinal inflammation.

In conclusion, CBD BDS, given after the inflammatory insult, attenuates injury and motility in intestinal models of inflammation.

These findings sustain the rationale of combining CBD with other minor Cannabis constituents and support the clinical development of CBD BDS for IBD treatment.”

Dendritic Cell Regulation by Cannabinoid-Based Drugs.

pharmaceuticals-logo

“Cannabinoid pharmacology has made important advances in recent years after the cannabinoid system was discovered.

Studies in experimental models and in humans have produced promising results using cannabinoid-based drugs for the treatment of obesity and cancer, as well as neuroinflammatory and chronic inflammatory diseases.

Moreover, as we discuss here, additional studies also indicates that these drugs have immunosuppressive and anti-inflammatory properties including modulation of immune cell function.

Thus, manipulation of the endocannabinoid system in vivo may provide novel therapeutic strategies against inflammatory disorders.

At least two types of cannabinoid receptors, cannabinoid 1 and cannabinoid 2 receptors are expressed on immune cells such as dendritic cells (DC). Dendritic cells are recognized for their critical role in initiating and maintaining immune responses.

Therefore, DC are potential targets for cannabinoid-mediated modulation.

Here, we review the effects of cannabinoids on DC and provide some perspective concerning the therapeutic potential of cannabinoids for the treatment of human diseases involving aberrant inflammatory processes.”

https://www.ncbi.nlm.nih.gov/pubmed/27713374

Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARα.

Image result for FASEB J.

“Cannabinoids modulate intestinal permeability through CB1.

The endocannabinoid-like compounds oleoylethanolamine (OEA) and palmitoylethanolamine (PEA) play an important role in digestive regulation, and we hypothesized they would also modulate intestinal permeability.

OEA and PEA have endogenous roles and potential therapeutic applications in conditions of intestinal hyperpermeability and inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/27623929

Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

Image result for plos one logo

“Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear.

In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome.

We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.”

http://www.ncbi.nlm.nih.gov/pubmed/27611972

Endocannabinoids inhibit neurogenic inflammation in murine joints by a non-canonical cannabinoid receptor mechanism.

Image result for neuropeptides journal

“Neurogenic inflammation is a local inflammatory response that is driven by the peripheral release of neuropeptides from small diameter afferents which occurs in many organs including joints.

The knee joint has a rich endocannabinoid system which has been shown to decrease acute synovitis.

The aim of this study was to investigate the influence of joint afferents on leukocyte-endothelial interactions within the synovial microcirculation of mice and determine the role of endocannabinoids on this inflammatory response.

These results provide evidence that antidromic stimulation of the mouse saphenous nerve promotes leukocyte rolling within the synovial microcirculation, and that endocannabinoids can attenuate this neurogenic inflammatory response.”

http://www.ncbi.nlm.nih.gov/pubmed/27567396

The gastrointestinal tract – a central organ of cannabinoid signaling in health and disease.

Image result for Neurogastroenterol Motil

“In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract.

Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors.

After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS.

Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity.

In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer.

PURPOSE:

The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27561826

Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment.

“Non-psychotropic atypical cannabinoids have therapeutic potential in a variety of inflammatory conditions including those of the gastrointestinal tract.

Here we examined the effects of the atypical cannabinoid abnormal cannabidiol (Abn-CBD) on wound healing, inflammatory cell recruitment and colitis in mice.

TNBS-induced colitis was attenuated by treatment with Abn-CBD.

Abn-CBD is protective against TNBS-induced colitis, promotes wound healing of endothelial and epithelial cells and inhibits neutrophil accumulation on HUVEC monolayers.

Thus, the atypical cannabinoid Abn-CBD represents a novel potential therapeutic in the treatment of intestinal inflammatory diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27418880