Experimental cannabinoid 2 receptor inhibition in CNS injury-induced immunodeficiency syndrome.

“Severe central nervous system (CNS) injury, such as stroke, traumatic brain injury or spinal cord injury, is known to increase susceptibility to infections. The increased susceptibility to infection is due to an impaired immune response and is referred to as CNS injury-induced immune deficiency syndrome (CIDS).

The cannabinoid 2 receptor (CB2 R) on immune cells presents a potential therapeutic target in CIDS as activation of this receptor has been shown to be involved in immunosuppression.

Our findings suggest that inhibition of CB2 R signaling in animals with CIDS challenged with endotoxin restored peripheral leukocyte recruitment without detrimental impact on infarct size.

We conclude that the endocannabinoid system is involved in the impaired immune response following CNS injury and future studies should further explore the CB2 R pathway in order to develop novel therapies for CIDS.”

http://www.ncbi.nlm.nih.gov/pubmed/26999797

The molecular mechanism and effect of cannabinoid-2 receptor agonist on the blood-spinal cord barrier permeability induced by ischemia-reperfusion injury.

“Previous studies have shown that modulation of the receptor-mediated endocannabinoid system during ischemia injury can induce potent neuroprotective effects.

However, little is known about whether cannabinoid-2 (CB2) receptor agonist would produce a protective effect on blood-spinal cord barrier (BSCB) during ischemia.

Taken together, all of these results suggested that JWH-015 might regulate the BSCB permeability and this effect could be related to paracellular and transcellular pathway.

And pharmacological CB2R ligands offer a new strategy for BSCB protection during ischemic injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26835555

Prior Cannabis Use Is Associated with Outcome after Intracerebral Hemorrhage.

“The purpose of this study was to determine the implications of cannabis use in intracerebral hemorrhage (ICH) patients.

CONCLUSION:

In this multinational cohort, cannabis use was discovered in nearly 10% of patients with spontaneous ICH. Although there was no relationship between cannabis use and specific ICH characteristics, CB+ patients had milder ICH presentation and less disability at discharge.”

http://www.ncbi.nlm.nih.gov/pubmed/26820826

Role of hypothalamic cannabinoid receptors in post-stroke depression in rats.

“One of the most common psychological consequences of stroke is post-stroke depression (PSD). While more than 30 percent of stroke patients eventually develop PSD, the neurobiological mechanisms underlying such a phenomenon have not been well investigated.

Given the critical involvement of hypothalamic-pituitary-adrenal axis and endocannabinoid system in response to stressful stimuli, we evaluated the hypothesis that cannabinoid receptors in the hypothalamus are critical for modulation of post-stroke depression-like behaviors in rats.

Taken together, these results suggest that decreased CB1 receptor expression is likely associated with the development of post-stroke depression, and CB2 receptor may be a potential therapeutic target for the treatment post-stroke depressive disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26778127

Cannabidiol protects an in vitro model of the blood brain barrier (BBB) from oxygen-glucose deprivation via PPARγ and 5-HT1A.

“In vivo and in vitro studies have demonstrated a protective effect of cannabidiol (CBD) in reducing infarct size in stroke models, and against epithelial barrier damage in numerous disease models.

We aimed to investigate whether CBD also affects blood-brain barrier (BBB) permeability following ischaemia.

These data suggest that activity at the BBB could represent an as yet unrecognised mechanism of CBD-induced neuroprotection in ischaemic stroke, mediated by PPARγ and 5-HT1A .”

http://www.ncbi.nlm.nih.gov/pubmed/26497782

Cannabinoid receptor type 1 agonist ACEA improves motor recovery and protects neurons in ischemic stroke in mice.

“Brain ischemia produces neuronal cell death and the recruitment of pro-inflammatory cells.

In turn, the search for neuroprotection against this type of insult has rendered results involving a beneficial role of endocannabinoid receptor agonists in the Central Nervous System.

In this work, to further elucidate the mechanisms associated to this neuroprotective effect…

Motor tests showed a progressive deterioration in motor activity in ischemic animals, which only ACEA treatment was able to counteract.

Our results suggest that CB1R may be involved in neuronal survival and in the regulation of neuroprotection during focal cerebral ischemia in mice.”

http://www.ncbi.nlm.nih.gov/pubmed/26296704

http://www.thctotalhealthcare.com/category/stroke-2/

Cannabis, Cannabinoids, and Cerebral Metabolism: Potential Applications in Stroke and Disorders of the Central Nervous System.

“No compound has generated more attention in both the scientific and recently in the political arena as much as cannabinoids.

These diverse groups of compounds referred collectively as cannabinoids have both been vilified due to its dramatic and potentially harmful psychotropic effects and glorified due to its equally dramatic and potential application in a number of acute and chronic neurological conditions.

Previously illegal to possess, cannabis, the plant where natural form of cannabinoids are derived, is now accepted in a growing number of states for medicinal purpose, and some even for recreational use, increasing opportunities for more scientific experimentation.

The purpose of this review is to summarize the growing body of literature on cannabinoids and to present an overview of our current state of knowledge of the human endocannabinoid system in the hope of defining the future of cannabinoids and its potential applications in disorders of the central nervous system, focusing on stroke.”

http://www.ncbi.nlm.nih.gov/pubmed/26238742

Time-Dependent Protection of CB2 Receptor Agonist in Stroke.

“Recent studies have indicated that type 2 cannabinoid receptor (CB2R) agonists reduce neurodegeneration after brain injury through anti-inflammatory activity.

The purpose of this study was to examine the time-dependent interaction of CB2R and inflammation in stroke brain.

In conclusion, our data support a time-dependent neuroprotection of CB2 agonist in an animal model of stroke.

Delayed post- treatment with PPAR-γ agonist induced behavioral recovery and microglial suppression; early treatment with CB2R agonist suppressed neurodegeneration in stroke animals.”

http://www.ncbi.nlm.nih.gov/pubmed/26186541

http://www.thctotalhealthcare.com/category/stroke-2/

A selective cannabinoid CB2 agonist attenuates damage and improves memory retention following stroke in mice.

“We have recently demonstrated that treatment with a cannabinoid CB2 agonist was protective in a mouse middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. The present study aimed to determine whether these protective effects of CB2 agonism would extend to a mouse photoinjury model of permanent ischemia and determine associated alterations in cognition and infarct size…

We conclude that CB2 activation is protective against cognitive deficits and tissue damage following permanent ischemia…”

http://www.ncbi.nlm.nih.gov/pubmed/26032254

http://www.thctotalhealthcare.com/category/stroke-2/