Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as a discovery target.

 

Image result for expert opinion on drug discovery

“Allosteric modulators of G-protein coupled receptors (GPCRs) hold the promise of improved pharmacology and safety over typical orthosteric GPCR ligands.

These features are particularly relevant to the cannabinoid receptor 1 (CB1R) GPCR, since typical orthosteric CB1R ligands are associated with adverse events that limit their translational potential.

Areas covered: The contextual basis for applying allostery to CB1R is considered from pharmacological, drug-discovery, and medicinal standpoints.

Rational design of small-molecule CB1R allosteric modulators as potential pharmacotherapeutics would be greatly facilitated by direct experimental characterization of structure-function correlates underlying the biological activity of chemically-diverse CB1R allosteric modulators, CB1R allosteric ligand-binding binding pockets, and amino acid contact residues critical to allosteric ligand engagement and activity.

In these regards, designer covalent probes exhibiting well-characterized molecular pharmacology as CB1R allosteric modulators are emerging as valuable molecular reporters enabling experimental interrogation of CB1R allosteric site(s) and informing the design of new CB1R agents as drugs.

Expert opinion: Synthesis and pharmacological profiling of CB1R allosteric ligands will continue to provide valuable insights into CB1R structure-function correlates. The resulting data should expand the repertoire of novel agents capable of exerting therapeutic benefit by modulating CB1R-dependent signaling.”

Cannabisol, a novel Δ9-THC dimer possessing a unique methylene bridge, isolated from Cannabis sativa.

Image result for Tetrahedron Lett.

“Cannabisol (1), a unique dimer of Δ9-tetrahydrocannabinol (Δ9-THC) with a methylene bridge, was isolated from Cannabis sativa.

This is the first example of a C-bridged dimeric cannabinoid.

The structure of 1 was unambiguously deduced by HRESIMS, GCMS, and NMR spectroscopy.

A plausible biogenesis of 1 is described.”

Acute and chronic effects of cannabidiol on Δ⁹-tetrahydrocannabinol (Δ⁹-THC)-induced disruption in stop signal task performance.

Image result for Exp Clin Psychopharmacol

“Recent clinical and preclinical research has suggested that cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have interactive effects on measures of cognition; however, the nature of these interactions is not yet fully characterized.

To address this, we investigated the effects of Δ9-THC and CBD independently and in combination with proposed therapeutic dose ratios of 1:1 and 1:3 Δ9-THC:CBD in adult rhesus monkeys performing a stop signal task (SST).

These results indicate that CBD, when combined with Δ9-THC in clinically available dose ratios, does not exacerbate and, under restricted conditions may even attenuate, Δ9-THC’s behavioral effects.”

https://www.ncbi.nlm.nih.gov/pubmed/27690502

Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain.

Image result for Frontiers in Pharmacology

“The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues.

The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states.

Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited.

Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time.

This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis.

Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain.”

https://www.ncbi.nlm.nih.gov/pubmed/27695415

Cannabidiol: a potential treatment for post Ebola Syndrome?

Image result for international journal of infectious diseases

“Patients recovered from Ebola virus infection may experience short- and long-term physical, neuropsychological and social sequelae, including arthralgia, musculoskeletal pain, ophthalmic inflammation, auditory problems, fatigue, confusion, insomnia, short-term memory impairment, anxiety, depression and anorexia, all lasting from 2 weeks to more than 2 years.

Currently there are no treatments for post Ebola sequelae.

We hypothesize that cannabidiol (CBD) may attenuate some of these post Ebola sequelae, several of which have been postulated to result from inflammation and/or an autoimmune response.

CBD has anti-inflammatory actions in various animal models.

Clinical studies have shown that oral administration of CBD, compared to placebo, significantly reduces anxiety, has antinociceptive and anticonvulsant actions, and may be therapeutic for insomnia.

Overall, CBD has a number of pharmacological effects that may significantly improve the mental and somatic health of patients suffering from post Ebola sequelae.

In humans, CBD, at therapeutic doses, does not: 1) elicit dependence or tolerance; 2) significantly alter heart rate or blood pressure; 3) affect gastrointestinal transit; 4) produce significant cognitive or psychomotor impairments. Mild sedation and nausea are the most commonly reported adverse effects associated with CBD.

CBD, based on its pharmacological effects and favorable safety profile, should be considered as a treatment for individuals with post Ebola sequelae.”

https://www.ncbi.nlm.nih.gov/pubmed/27686726

Neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol in hypoxic-ischemic newborn piglets.

Image result for Pediatr Res.

“To test the neuroprotective effects of the nonpsychoactive cannabinoid cannabidiol (CBD), piglets received i.v. CBD or vehicle after hypoxia-ischemia (HI: temporary occlusion of both carotid arteries plus hypoxia).

CBD administration was free from side effects; moreover, CBD administration was associated with cardiac, hemodynamic, and ventilatory beneficial effects.

In conclusion, administration of CBD after HI reduced short-term brain damage and was associated with extracerebral benefits.”

https://www.ncbi.nlm.nih.gov/pubmed/18679164

Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs.

Image result for Pediatr Res.

“Newborn piglets exposed to acute hypoxia-ischemia (HI) received i.v. cannabidiol (HI + CBD) or vehicle (HI + VEH). In HI + VEH, 72 h post-HI brain activity as assessed by amplitude-integrated EEG (aEEG) had only recovered to 42 ± 9% of baseline, near-infrared spectroscopy (NIRS) parameters remained lower than normal, and neurobehavioral performance was abnormal (27.8 ± 2.3 points, normal 36). In the brain, there were fewer normal and more pyknotic neurons, while astrocytes were less numerous and swollen. Cerebrospinal fluid concentration of neuronal-specific enolase (NSE) and S100β protein and brain tissue percentage of TNFα(+) cells were all higher. In contrast, in HI + CBD, aEEG had recovered to 86 ± 5%, NIRS parameters increased, and the neurobehavioral score normalized (34.3 ± 1.4 points). HI induced histological changes, and NSE and S100β concentration and TNFα(+) cell increases were suppressed by CBD. In conclusion, post-HI administration of CBD protects neurons and astrocytes, leading to histological, functional, biochemical, and neurobehavioral improvements.”

https://www.ncbi.nlm.nih.gov/pubmed/21654550

THC (Δ9-Tetrahydrocannabinol) Exerts Neuroprotective Effect in Glutamate-affected Murine Primary Mesencephalic Cultures Through Restoring Mitochondrial Membrane Potential and Anti-apoptosis Involving CB1 Receptor-dependent Mechanism.

Phytotherapy Research

“Aging-related neurodegenerative diseases, such as Parkinson’s disease (PD) or related disorders, are an increasing societal and economic burden worldwide.

Δ9-Tetrahydrocannabinol (THC) is discussed as a neuroprotective agent in several in vitro and in vivo models of brain injury. However, the mechanisms by which THC exhibits neuroprotective properties are not completely understood.

In the present study, we investigated neuroprotective mechanisms of THC in glutamate-induced neurotoxicity in primary murine mesencephalic cultures, as a culture model for PD.

THC protected dopaminergic neurons and other cell types of primary dissociated cultures from glutamate-induced neurotoxicity.

Moreover, THC significantly counteracted the glutamate-induced mitochondrial membrane depolarization and apoptosis.

In conclusion, THC exerts anti-apoptotic and restores mitochondrial membrane potential via a mechanism dependent on CB1 receptor.

It strengthens the fact that THC has a benefit on degenerative cellular processes occurring, among others, in PD and other neurodegenerative diseases by slowing down the progression of neuronal cell death.”

https://www.ncbi.nlm.nih.gov/pubmed/27654887

http://onlinelibrary.wiley.com/wol1/doi/10.1002/ptr.5712/full

Tetrahydropyrazolo[4,3-c]pyridine derivatives as potent and peripherally selective cannabinoid-1 (CB1) receptor inverse agonists.

Image result for Bioorg Med Chem Lett

“Peripherally restricted CB1 receptor inverse agonists hold potential as useful therapeutics to treat obesity and related metabolic diseases without causing undesired CNS-mediated adverse effects. We identified a series of tetrahydropyrazolo[4,3-c]pyridine derivatives as potent and highly peripherally selective CB1 receptor inverse agonists. This discovery was achieved by introducing polar functional groups into the molecule, which increase the topological polar surface area and reduce its brain-penetrating ability.”

https://www.ncbi.nlm.nih.gov/pubmed/27671499

“Tetrahydroindazole derivatives as potent and peripherally selective cannabinoid-1 (CB1) receptor inverse agonists. A series of potent and receptor-selective cannabinoid-1 (CB1) receptor inverse agonists has been discovered. Peripheral selectivity of the compounds was assessed by a mouse tissue distribution study, in which the concentrations of a test compound in both plasma and brain were measured. A number of peripherally selective compounds have been identified through this process. Compound 2p was further evaluated in a 3-week efficacy study in the diet-induced obesity (DIO) mouse model. Beneficial effects on plasma glucose were observed from the compound-treated mice.”  https://www.ncbi.nlm.nih.gov/pubmed/27671496

Gonadal hormone modulation of ∆9-tetrahydrocannabinol-induced antinociception and metabolism in female versus male rats.

Image result for Pharmacol Biochem Behav

“The gonadal hormones testosterone (T) in adult males and estradiol (E2) in adult females have been reported to modulate behavioral effects of ∆9-tetrahydrocannabinol (THC). This study determined whether activational effects of T and E2 are sex-specific, and whether hormones modulate production of the active metabolite 11-hydroxy-THC (11-OH-THC) and the inactive metabolite 11-nor-9-carboxy-THC (THC-COOH). Adult male and female rats were gonadectomized (GDX) and treated with nothing (0), T (10-mm Silastic capsule/100g body weight), or E2 (1-mm Silastic capsule/rat). Three weeks later, saline or the cytochrome P450 inhibitor proadifen (25mg/kg; to block THC metabolism and boost THC’s effects) was injected i.p.; 1h later, vehicle or THC (3mg/kg females, 5mg/kg males) was injected i.p., and rats were tested for antinociceptive and motoric effects 15-240min post-injection. T did not consistently alter THC-induced antinociception in males, but decreased it in females (tail withdrawal test). Conversely, T decreased THC-induced catalepsy in males, but had no effect in females. E2 did not alter THC-induced antinociception in females, but enhanced it in males. The discrepant effects of T and E2 on males’ and females’ behavioral responses to THC suggests that sexual differentiation of THC sensitivity is not simply due to activational effects of hormones, but also occurs via organizational hormone or sex chromosome effects. Analysis of serum showed that proadifen increased THC levels, E2 increased 11-OH-THC in GDX males, and T decreased 11-OH-THC (and to a lesser extent, THC) in GDX females. Thus, hormone modulation of THC’s behavioral effects is caused in part by hormone modulation of THC oxidation to its active metabolite. However, the fact that hormone modulation of metabolism did not alter THC sensitivity similarly on all behavioral measures within each sex suggests that other mechanisms also play a role in gonadal hormone modulation of THC sensitivity in adult rats.”

https://www.ncbi.nlm.nih.gov/pubmed/27670094