Reductions in alcohol use following medical cannabis initiation: results from a large cross-sectional survey of medical cannabis patients in Canada

 International Journal of Drug Policy“Evidence details how cannabis can influence the use of other psychoactive substances, including prescription medications, alcohol, tobacco and illicit drugs, but very little research has examined the factors associated with these changes in substance use patterns. This paper explores the self-reported use of cannabis as a substitute for alcohol among a Canadian medical cannabis patient population.

Results: Overall, 419 (44%) participants reported decreases in alcohol usage frequency over 30 days, 323 (34%) decreased the number of standard drinks they had per week, and 76 (8%) reported no alcohol use at all in the 30 days prior to the survey. Being below 55 years of age and reporting higher rates of alcohol use in the pre-period were both associated with greater odds of reducing alcohol use, and an intention to use medical cannabis to reduce alcohol consumption was associated with significantly greater odds of both reducing and ceasing alcohol use altogether.

Conclusions: Our findings suggest that medical cannabis initiation may be associated with self-reported reductions and cessation of alcohol use among medical cannabis patients. Since alcohol is the most prevalent recreational substance in North America, and its use results in significant rates of criminality, morbidity and mortality, these findings may result in improved health outcomes for medical cannabis patients, as well as overall improvements in public health and safety.”

https://pubmed.ncbi.nlm.nih.gov/33068830/

“Following medical cannabis initiation, 44% of participants reported decreases in alcohol use frequency over 30 days, and 34% decreased the number of standard drinks they had per week. Younger age (<55 years old) and higher rates of alcohol use prior to medical cannabis initiation were associated with greater odds of reducing alcohol. Specific intention to use medical cannabis to reduce alcohol consumption resulted in greater odds of reducing and/or ceasing use altogether.”

https://www.sciencedirect.com/science/article/abs/pii/S0955395920303017?via%3Dihub

A Literature Analysis on Medicinal Use and Research of Cannabis in the Meiji Era of Japan

 Journal of Pharmacopuncture“Cannabis is a historical plant which has been used as a medicine in East Asia.

 

Cannabis was prescribed in Meiji era of Japan to alleviate pain and cure the digestive, respiratory, urinary, and nervous system diseases such as indigestion, asthma, tuberculosis, gonorrhea and its complications, insomnia, and nervous prostration.

Cannabis was medically used in Meiji era of Japan and the reporting and sharing of its clinical effect was published on the medical journals like present days.

There were already Cannabis regulations in that era, but its medicinal use was more liberated than nowadays.

It may be a chance to reconsider the current legal system, which strictly controls the use of Cannabis.”

https://pubmed.ncbi.nlm.nih.gov/33072412/

http://www.journal-jop.org/journal/view.html?doi=10.3831/KPI.2020.23.3.142

Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases

ijms-logo “The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task.

An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases.

This review focuses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.”

https://pubmed.ncbi.nlm.nih.gov/33080916/

https://www.mdpi.com/1422-0067/21/20/7693

Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome

“Considering lack of target-specific antiviral treatment and vaccination for COVID-19, it is absolutely exigent to have an effective therapeutic modality to reduce hospitalization and mortality rate as well as to improve COVID-19-infected patient outcomes.

In a follow-up study to our recent findings indicating the potential of Cannabidiol (CBD) in the treatment of acute respiratory distress syndrome (ARDS), here we show for the first time that CBD may ameliorate the symptoms of ARDS through up-regulation of apelin, a peptide with significant role in the central and peripheral regulation of immunity, CNS, metabolic and cardiovascular system.

CBD treatment was able to reverse the symptoms of ARDS towards a normal level. Importantly, CBD treatment increased the apelin expression significantly, suggesting a potential crosstalk between apelinergic system and CBD may be the therapeutic target in the treatment of inflammatory diseases such as COVID-19 and many other pathologic conditions.”

https://pubmed.ncbi.nlm.nih.gov/33058425/

“Cannabidiol (CBD) is a non‐psychotropic phytocannabinoid that regulates immune responses in multiple experimental disease models, including work by our laboratory showing a benefit following ARDS‐like injury in mice. Consistent with our findings, a recent commentary, based on anecdotal reports, supports the therapeutic use of CBD in COVID‐19‐infected patients. Our data demonstrate that CBD improves lung structure and exerts a potent anti‐inflammatory effect following experimental ARDS.”

https://onlinelibrary.wiley.com/doi/10.1111/jcmm.15883

The immunosuppressive effect of the endocannabinoid system on the inflammatory phenotypes of macrophages and mesenchymal stromal cells: a comparative study

SpringerLink “The inflammatory sequence is the first phase of wound healing. Macrophages (MPhs) and mesenchymal stromal cells (MSCs) respond to an inflammatory microenvironment by adapting their functional activity, which polarizes them into the pro-inflammatory phenotypes M1 and MSC1. Prolongation of the inflammatory phase results in the formation of chronic wounds. The endocannabinoid system (ECS) possesses immunomodulatory properties that may impede this cellular phenotypic switch.

Methods: We investigated the immunosuppressive influence of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) on the M1 and MSC1 cytokine secretion. Lipopolysaccharides (LPS) were used as inflammagen to stimulate MPhs and MSCs. Both inflammatory phenotypes were co-exposed to AEA or 2-AG, the specific cannabinoid receptor CB2 agonist JWH-133 served as reference. The inflammatory responses were detected by CD80/163 immuno-labelling and by ELISA measures of secreted IL-6, IL-8, MIF, TNF-α, TGF-β, and VEGF.

Results: M1 cells were found positive for CD80 expression and secreted less IL-6 and IL-8 than MSC1 cells, while both cell types produced similar amounts of MIF. TNF-α release was increased by M1, and growth factors were secreted by MSC1, only. Cannabinoid receptor ligands efficiently decreased the inflammatory response of M1, while their impact was less pronounced in MSC1.

Conclusions: The ECS down-regulated the inflammatory responses of MPhs and MSCs by decreasing the cytokine release upon LPS treatment, while CB2 appeared to be of particular importance. Hence, stimulating the ECS by manipulation of endo- or use of exogenous cannabinoids in vivo may constitute a potent therapeutic option against inflammatory disorders.”

https://pubmed.ncbi.nlm.nih.gov/33026642/

https://link.springer.com/article/10.1007%2Fs43440-020-00166-3

The impact of cannabinoid type 2 receptors (CB2Rs) in neuroprotection against neurological disorders

 Acta Pharmacologica Sinica“Cannabinoids have long been used for their psychotropic and possible medical properties of symptom relief. In the past few years, a vast literature shows that cannabinoids are neuroprotective under different pathological situations.

Most of the effects of cannabinoids are mediated by the well-characterized cannabinoid receptors, the cannabinoid type 1 receptor (CB1R) and cannabinoid type 2 receptor (CB2R). Even though CB1Rs are highly expressed in the central nervous system (CNS), the adverse central side effects and the development of tolerance resulting from CB1R activation may ultimately limit the clinical utility of CB1R agonists. In contrast to the ubiquitous presence of CB1Rs, CB2Rs are less commonly expressed in the healthy CNS but highly upregulated in glial cells under neuropathological conditions.

Experimental studies have provided robust evidence that CB2Rs seem to be involved in the modulation of different neurological disorders. In this paper, we summarize the current knowledge regarding the protective effects of CB2R activation against the development of neurological diseases and provide a perspective on the future of this field. A better understanding of the fundamental pharmacology of CB2R activation is essential for the development of clinical applications and the design of novel therapeutic strategies.”

https://pubmed.ncbi.nlm.nih.gov/33024239/

https://www.nature.com/articles/s41401-020-00530-2

Endocannabinoids Inhibit the Induction of Virulence in Enteric Pathogens

Cell | Publons
“Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.”
Figure thumbnail fx1

“Fighting intestinal infections with the body’s own endocannabinoids. By harnessing the power of natural compounds produced in the body and in plants, we may eventually treat infections in a whole new way.”  https://www.sciencedaily.com/releases/2020/10/201007123119.htm

“Study may explain why cannabis plant can reduce symptoms of various bowel conditions” https://www.news-medical.net/news/20201007/Study-could-help-explain-why-cannabis-plant-can-reduce-symptoms-of-various-bowel-conditions.aspx

Cannabis: An Emerging Treatment for Common Symptoms in Older Adults

Journal of the American Geriatrics Society “Background/objectives: Use of cannabis is increasing in a variety of populations in the United States; however, few investigations about how and for what reasons cannabis is used in older populations exist.

Design: Anonymous survey.

Setting: Geriatrics clinic.

Participants: A total of 568 adults 65 years and older.

Intervention: Not applicable.

Measurements: Survey assessing characteristics of cannabis use.

Results: Approximately 15% (N = 83) of survey responders reported using cannabis within the past 3 years. Half (53%) reported using cannabis regularly on a daily or weekly basis, and reported using cannabidiol-only products (46%).

The majority (78%) used cannabis for medical purposes only, with the most common targeted conditions/symptoms being pain/arthritis (73%), sleep disturbance (29%), anxiety (24%), and depression (17%). Just over three-quarters reported cannabis “somewhat” or “extremely” helpful in managing one of these conditions, with few adverse effects.

Just over half obtained cannabis via a dispensary, and lotions (35%), tinctures (35%), and smoking (30%) were the most common administration forms. Most indicated family members (94%) knew about their cannabis use, about half reported their friends knew, and 41% reported their healthcare provider knowing. Sixty-one percent used cannabis for the first time as older adults (aged ≥61 years), and these users overall engaged in less risky use patterns (e.g., more likely to use for medical purposes, less likely to consume via smoking).

Conclusion: Most older adults in the sample initiated cannabis use after the age of 60 years and used it primarily for medical purposes to treat pain, sleep disturbance, anxiety, and/or depression. Cannabis use by older adults is likely to increase due to medical need, favorable legalization, and attitudes.”

https://pubmed.ncbi.nlm.nih.gov/33026117/

https://onlinelibrary.wiley.com/doi/10.1111/jgs.16833

“Study Finds Older Adults Using Cannabis to Treat Common Health Conditions”  https://health.ucsd.edu/news/releases/Pages/2020-10-07-study-finds-older-adults-using-cannabis-to-treat-common-health-conditions.aspx

An Agathokakological tale of ∆9 -THC: Exploration of Possible Biological Targets

“∆ 9 -Tetrahydrocannabinol (∆9 -THC), the active phytocannabinoid in cannabis, is virtually an adjunct to the endogenous endocannabinoid signaling system.

By interacting with G-protein-coupled receptors CB1 and CB2, ∆9 -THC affects peripheral and central circulation by lowering sympathetic activity, altering gene expression, cell proliferation, and differentiation, decreasing leukocyte migration, modulating neurotransmitter release thereby modulating cardiovascular functioning, tumorigenesis, immune responses, behavioral and locomotory activities respectively.

∆ 9 -THC is effective in suppressing chemotherapy-induced vomiting, retards malignant tumor growth, inhibits metastasis, and promotes apoptosis. Other mechanisms involved are targeting cell cycle at the G2-M phase in human breast cancer, downregulation of E2F transcription factor 1 (E2F1) in human glioblastoma multiforme, and stimulation of ER stress-induced autophagy.

∆ 9 -THC also plays a role in ameliorating neuroinflammation, excitotoxicity, neuroplasticity, trauma, and stroke and is associated with reliving childhood epilepsy, brain trauma, and neurodegenerative diseases.

∆9 -THC via CB1 receptors affects nociception, emotion, memory, and reduces neuronal excitability and excitotoxicity in epilepsy. It also increases renal blood flow, reduces intraocular pressure via a sympathetic pathway, and modulates hormonal release, thereby decreasing the reproductive function and increasing glucose metabolism.

Versatile medical marijuana has stimulated abundant research demonstrating substantial therapeutic promise, suggesting the possibilities of first-in-class drugs in diverse therapeutic segments. In this review, we represent the current pharmacological status of the phytocannabinoid, ∆ 9 -THC, and synthetic analogs in cancer, cardiovascular, and neurodegenerative disorders.”

https://pubmed.ncbi.nlm.nih.gov/33001012/

https://www.eurekaselect.com/186455/article

Novel cannabidiol sunscreen protects keratinocytes and melanocytes against ultraviolet B radiation

“Cannabidiol (CBD), a natural occurring phytocannabinoid, is used extensively in consumer products ranging from foods to shampoos, topical oils and lotions.

Several studies demonstrated the anti-inflammatory and antioxidative properties of cannabidiol. Nevertheless, the role of cannabidiol use in sunscreens is largely unknown as no studies on its effect on keratinocytes or melanocytes exist. As such, we aimed to explore the effect of CBD on keratinocyte and melanocyte viability following ultraviolet B (UVB) irradiation.

CBD exhibited a dose-dependent protective effect on both keratinocytes and melanocyte viability. Further, since CBD does not demonstrate absorption in the UVB spectra, we speculate that the protective effect is due to reduction in reactive oxygen species.

To our knowledge, this is the first study demonstrating the protective effect of CBD on keratinocytes and melanocytes irradiated with UVB.”

https://pubmed.ncbi.nlm.nih.gov/32964699/

https://onlinelibrary.wiley.com/doi/10.1111/jocd.13693