Kinetics of acetylcholinesterase inhibition by hemp seed protein-derived peptides.

Journal of Food Biochemistry banner“The aim of this work was to enhance the acetylcholinesterase (AChE)-inhibitory activity of a pepsin-produced hemp seed protein hydrolysates (HPH) through reverse-phase HPLC separation followed by identification of peptide sequences present in the most active fraction. The HPH was separated into eight fractions (F1-F8) with F7 exhibiting significantly (p < 0.05) the strongest (97.5%) in vitro inhibition of electric eel AChE (eeAChE) activity in comparison to 53.8% for HPH. The HPH consisted mostly of low molecular weight peptides of < 11 amino acid residues and most contained at least one hydrophobic amino acid. Kinetics of enzyme inhibition revealed a mixed-type inhibition of eeAChE activity by HPH whereas F7 acted through an uncompetitive mode; in contrast inhibition of human AChE by HPH and F7 was uncompetitive. The stronger inhibitory potency of the F7 peptides fraction against both enzymes was confirmed through reduced maximal velocity, catalytic efficiency, and inhibition constant values when compared to the HPH.

PRACTICAL APPLICATIONS: The use of natural products for the prevention or treatment of human diseases continues to be an area of intense research activities. Food protein-derived peptides obtained through enzymatic hydrolysis of hemp seed proteins were shown in vitro to be strong inhibitors of activities of both the eel and human forms of acetylcholinesterase (AChE). AChE is an important therapeutic target because excessive activity of this enzyme is a causative factor of neurodegenerative diseases such as dementia and Alzheimer’s. This work showed that peptides in the most active fraction are small in sizes, which may favor their absorption into blood circulation and possible permeation of the blood-brain barrier. Therefore, the hemp seed peptides are potential agents that can be used to formulate functional foods and nutraceuticals against neurodegenerative diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/31353736

https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.12897

Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds.

antioxidants-logo “Cannabis sativa L. seeds have been an important source of protein, oil, and dietary fiber for human and animals. Currently, there is a growing interest in the commercial products of these seeds, which are recognized as a legitimate source of medicaments, cosmeceuticals, and nutraceuticals.

The objective of this study was to investigate the nutritional, phytochemical composition, and antioxidant properties of seeds from seven hemp cultivars grown in Greece for three consecutive years.

All the measured parameters strongly varied under the influence of growing year and genotype. In particular, protein, oil, and carbohydrates’ content of hemp seeds as well as fatty acids’ composition were mainly affected by genotype, whereas the growing year had a major effect on phytochemical components and antioxidant activity, which was determined by the 2,2′-azino-bis (3-ethylbenzthiazoline sulfonate) (ABTS) and ferric-reducing antioxidant power (FRAP) assays. Moreover, a predominant effect of the year was observed for phenolic profiles as determined by high-performance liquid chromatography and total carotenoids’ content.

This study suggests that hemp seeds could be a promising food crop as a result of their high nutritive traits and antioxidant potential. A comparison of the studied cultivars, showed that Finola seeds had the highest oil and protein contents and, thus, appeared to be the most promising cultivar for cultivation in Greece.”

https://www.ncbi.nlm.nih.gov/pubmed/31627349

https://www.mdpi.com/2076-3921/8/10/491

Altered cannabinoid receptor expression in pancreatic islets in experimental model of uremia.

Folia Morphologica “Uremia leads to a number of metabolic and hormonal disorders including defective carbohydrate metabolism.

Endocannabinoids exert their effect on insulin and glucagon secretion via activation of specific receptors named CB1 and CB2. For this reason and the absence of reports on location and immunoreactivity of CB1, CB2 receptors compared to immunoreactivity of insulin- and glucagon- secreting cells in experimental uremia, the author decided to investigate this issue.

The aim of the present study was the immunohistochemical localization and evaluation of cannabinoid receptors (CB1, CB2), insulin and glucagon in the pancreatic islets of uremic rats.

RESULTS:

It was revealed the decreased immunoreactivity of the CB1 receptor and higher intensity of the immunohistochemical reaction against CB2 receptor as compared to the value in the control animals. Significantly higher immunoreactivity of glucagon-positive cells and weaker immunoreactivity of insulin-positive cells were observed in pancreatic islets of uremic rats.

CONCLUSIONS:

The obtained results indicate the involvement of cannabinoid receptors in the pathomechanism of carbohydrate metabolism disorders, associated with abnormal secretion of hormones by the α and β cells in uremia.”

https://www.ncbi.nlm.nih.gov/pubmed/31625133

https://journals.viamedica.pl/folia_morphologica/article/view/64828

“Uremia is a clinical syndrome marked by elevated concentrations of urea in the blood and associated with fluid, electrolyte, and hormone imbalances and metabolic abnormalities, which develop in parallel with deterioration of renal function.  The term uremia, which literally means urine in the blood, was first used by Piorry to describe the clinical condition associated with renal failure”  https://emedicine.medscape.com/article/245296-overview

Systematic Affinity Purification Coupled to Mass Spectrometry Identified p62 as Part of the Cannabinoid Receptor CB2 Interactome.

Image result for frontiers in molecular neuroscience“The endocannabinoid system (ECS) consists particularly of cannabinoid receptors 1 and 2 (CB1 and CB2), their endogenous ligands, and enzymes that synthesize and degrade their ligands. It acts in a variety of organs and disease states ranging from cancer progression over neuropathic pain to neurodegeneration. Protein components engaged in the signaling, trafficking, and homeostasis machinery of the G-protein coupled CB2, are however largely unknown. It is therefore important to identify further interaction partners to better understand CB2 receptor functions in physiology and pathophysiology. For this purpose, we used an affinity purification and mass spectrometry-based proteomics approach of Strep-HA-CB2 receptor in HEK293 cells. After subtraction of background interactions and protein frequency library assessment we could identify 83 proteins that were classified by the identification of minimally 2 unique peptides as highly probable interactors. A functional protein association network analysis obtained an interaction network with a significant enrichment of proteins functionally involved in protein metabolic process, in endoplasmic reticulum, response to stress but also in lipid metabolism and membrane organization. The network especially contains proteins involved in biosynthesis and trafficking like calnexin, Sec61A, tubulin chains TUBA1C and TUBB2B, TMED2, and TMED10. Six proteins that were only expressed in stable CB2 expressing cells were DHC24, DHRS7, GGT7, HECD3, KIAA2013, and PLS1. To exemplify the validity of our approach, we chose a candidate having a relatively low number of edges in the network to increase the likelihood of a direct protein interaction with CB2 and focused on the scaffold/phagosomal protein p62/SQSTM1. Indeed, we independently confirmed the interaction by co-immunoprecipitation and immunocytochemical colocalization studies. 3D reconstruction of confocal images furthermore showed CB2 localization in close proximity to p62 positive vesicles at the cell membrane. In summary, we provide a comprehensive repository of the CB2 interactome in HEK293 cells identified by a systematic unbiased approach, which can be used in future experiments to decipher the signaling and trafficking complex of this cannabinoid receptor. Future studies will have to analyze the exact mechanism of the p62-CB2 interaction as well as its putative role in disease pathophysiology.”

https://www.ncbi.nlm.nih.gov/pubmed/31616248

https://www.frontiersin.org/articles/10.3389/fnmol.2019.00224/full

Cannabinoid Receptor Interacting Protein 1a (CRIP1a): Function and Structure.

molecules-logo“Cannabinoid receptor interacting protein 1a (CRIP1a) is an important CB1 cannabinoid receptor-associated protein, first identified from a yeast two-hybrid screen to modulate CB1-mediated N-type Ca2+ currents. In this paper we review studies of CRIP1a function and structure based upon in vitro experiments and computational chemistry, which elucidate the specific mechanisms for the interaction of CRIP1a with CB1 receptors. N18TG2 neuronal cells overexpressing or silencing CRIP1a highlighted the ability of CRIP1 to regulate cyclic adenosine 3′,5’monophosphate (cAMP) production and extracellular signal-regulated kinase (ERK1/2) phosphorylation. These studies indicated that CRIP1a attenuates the G protein signaling cascade through modulating which Gi/o subtypes interact with the CB1 receptor. CRIP1a also attenuates CB1 receptor internalization via β-arrestin, suggesting that CRIP1a competes for β-arrestin binding to the CB1 receptor. Predictions of CRIP1a secondary structure suggest that residues 34-110 are minimally necessary for association with key amino acids within the distal C-terminus of the CB1 receptor, as well as the mGlu8a metabotropic glutamate receptor. These interactions are disrupted through phosphorylation of serines and threonines in these regions. Through investigations of the function and structure of CRIP1a, new pharmacotherapies based upon the CRIP-CB1 receptor interaction can be designed to treat diseases such as epilepsy, motor dysfunctions and schizophrenia.”

https://www.ncbi.nlm.nih.gov/pubmed/31614728

https://www.mdpi.com/1420-3049/24/20/3672

CLG from Hemp Seed Inhibits LPS-Stimulated Neuroinflammation in BV2 Microglia by Regulating NF-κB and Nrf-2 Pathways.

Go to Volume 4, Issue 15“The healthy benefits of hemp (Cannabis sativa L.) seed have often been attributed to its oils and proteins.

Recent studies reveal that hemp seed phenylpropionamides could also show various bioactivities. Continuation of our study on hemp seed provided a phenylpropionamide, coumaroylaminobutanol glucopyranoside (CLG). This work investigated the neuroprotective effect of CLG and its underlying mechanism using lipopolysaccharide-induced BV2 microglia.

Our study demonstrated that CLG increased adenosine monophosphate-activated protein kinase (AMPK) expression, suppressed the nuclear factor-kappa B (NF-κB) signaling pathway by inhibiting the phosphorylation of IκBα and NF-κB p65 and decreased proinflammatory cytokine levels in a concentration-dependent manner. Furthermore, CLG reduced the production of cellular reactive oxygen species and stimulated the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway.

Collectively, these results suggested that CLG effectively and simultaneously inhibited inflammatory responses and oxidative stress through the NF-κB and Nrf-2 signaling pathways. AMPK was also involved in the anti-inflammatory effect of CLG. This study provides new insights into the diverse bioactive constituents of hemp seed.”

https://www.ncbi.nlm.nih.gov/pubmed/31616830

“Hemp (Cannabis sativa L.) seed has been used as food and traditional medicine for centuries. Our findings contribute to the knowledge of diverse bioactive compounds from hemp seed and the potential of hemp seed in the treatment of microglia-related neuroinflammatory diseases.”

https://pubs.acs.org/doi/10.1021/acsomega.9b02168

How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review.

Neuroscience & Biobehavioral Reviews“The recent liberalisation of cannabis regulation has increased public and scientific debate about its potential benefits and risks. A key focus has been the extent to which cannabidiol (CBD) might influence the acute effects of delta-9-tetrahydrocannabinol (THC), but this has never been reviewed systematically. In this systematic review of how CBD influences the acute effects of THC we identified 16 studies involving 466 participants. Ten studies were judged at low risk of bias. The findings were mixed, although CBD was found to reduce the effects of THC in several studies. Some studies found that CBD reduced intense experiences of anxiety or psychosis-like effects of THC and blunted some of the impairments on emotion and reward processing. However, CBD did not consistently influence the effects of THC across all studies and outcomes. There was considerable heterogeneity in dose, route of administration and THC:CBD ratio across studies and no clear dose-response profile emerged. Although findings were mixed, this review suggests that CBD may interact with some acute effects of THC.”

https://www.ncbi.nlm.nih.gov/pubmed/31580839

“CBD influenced the effects of THC in some but not all studies. Several studies found that CBD reduced the acute effects of THC. CBD may reduce intense experiences of anxiety or psychosis-like effects of THC. CBD may blunt effects of THC on emotion and reward processing. CBD did not alter subjective intoxication or psychomotor effects of THC. CBD may influence the benefits and harms of cannabis”

https://www.sciencedirect.com/science/article/pii/S0149763419305615?via%3Dihub

Beyond THC and Endocannabinoids.

Image result for AR Annual Reviews“Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed. ”

https://www.ncbi.nlm.nih.gov/pubmed/31580774

https://www.annualreviews.org/doi/10.1146/annurev-pharmtox-010818-021441

Neuroprotective protein hydrolysates from hemp (Cannabis sativa L.) seeds.

 “Hemp (Cannabis sativa L.) seeds are well known for their potential use as a source of nutrients, fiber, and bioactive compounds.

A hemp protein isolate, prepared from defatted hemp flour, was hydrolyzed by alcalase and flavourzyme under specific conditions.

The resulting hydrolysates were evaluated for the selection of potentially bioactive hemp protein hydrolysates (HPHs) owing to their DPPH scavenging and ferric reducing antioxidant power activity. In vitro cell-free experiments led to the identification of two bioactive HPHs, HPH20A and HPH60A + 15AF, which were used at 50 and 100 μg mL-1 on BV-2 microglial cells in order to evaluate the anti-neuroinflammatory activities.

Our results showed that HPH20A and HPH60A + 15AF down-regulated TNF-α, IL-1β, and IL-6 mRNA transcriptional levels in LPS-stimulated BV-2 microglial cells. In addition, HPH20A and HPH60A + 15AF up-regulated the gene expression of anti-inflammatory cytokine IL-10.

This study suggests for the first time that HPHs may improve the neuroinflammatory and inflammatory states, supporting the nutraceutical value of hemp seeds.”

https://www.ncbi.nlm.nih.gov/pubmed/31576391

https://pubs.rsc.org/en/content/articlelanding/2019/FO/C9FO01904A#!divAbstract

Absence of Entourage: Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Functional Activity of Δ9-THC at Human CB1 and CB2 Receptors.

 View details for Cannabis and Cannabinoid Research cover image“Compounds present in Cannabis sativa such as phytocannabinoids and terpenoids may act in concert to elicit therapeutic effects. Cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) directly activate cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2); however, it is not known if terpenoids present in Cannabis also affect cannabinoid receptor signaling. Therefore, we examined six common terpenoids alone, and in combination with cannabinoid receptor agonists, on CB1 and CB2 signaling in vitro.

Results: α-Pinene, β-pinene, β-caryophyllene, linalool, limonene, and β-myrcene (up to 30-100 μM) did not change membrane potential in AtT20 cells expressing CB1 or CB2, or affect the response to a maximally effective concentration of the synthetic cannabinoid CP55,940. The presence of individual or a combination of terpenoids did not affect the hyperpolarization produced by Δ9-THC (10 μM): (CB1: control, 59%±7%; with terpenoids (10 μM each) 55%±4%; CB2: Δ9-THC 16%±5%, with terpenoids (10 μM each) 17%±4%). To investigate possible effect on desensitization of CB1 responses, all six terpenoids were added together with Δ9-THC and signaling measured continuously over 30 min. Terpenoids did not affect desensitization, after 30 min the control hyperpolarization recovered by 63%±6% in the presence of the terpenoids recovery was 61%±5%.

Discussion: None of the six of the most common terpenoids in Cannabis directly activated CB1 or CB2, or modulated the signaling of the phytocannabinoid agonist Δ9-THC. These results suggest that if a phytocannabinoid-terpenoid entourage effect exists, it is not at the CB1 or CB2 receptor level. It remains possible that terpenoids activate CB1 and CB2 signaling pathways that do not involve potassium channels; however, it seems more likely that they may act at different molecular target(s) in the neuronal circuits important for the behavioral effect of Cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/31559333

https://www.liebertpub.com/doi/10.1089/can.2019.0016

“Terpenoids and Phytocannabinoids Co-Produced in Cannabis Sativa Strains Show Specific Interaction for Cell Cytotoxic Activity. We found that in “high THC” or “high CBD” strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence.”  https://www.ncbi.nlm.nih.gov/pubmed/31438532