Cannabinoid receptors and TRPA1 on neuroprotection in a model of retinal ischemia.

Image result for Exp Eye Res.

“Retinal ischemia is a pathological event present in several retinopathies such as diabetic retinopathy and glaucoma, leading to partial or full blindness with no effective treatment available.

Since synthetic and endogenous cannabinoids have been studied as modulators of ischemic events in the central nervous system (CNS), the present study aimed to investigate the involvement of cannabinoid system in the cell death induced by ischemia in an avascular (chick) retina.

We observed that chick retinal treatment with a combination of WIN 55212-2 and cannabinoid receptor antagonists (either AM251/O-2050 or AM630) decreased the release of lactate dehydrogenase (LDH) induced by retinal ischemia in an oxygen and glucose deprivation (OGD) model.

Further, the increased availability of endocannabinoids together with cannabinoid receptor antagonists also had a neuroprotective effect.

Surprisingly, retinal exposure to any of these drugs alone did not prevent the release of LDH stimulated by OGD.

Since cannabinoids may also activate transient receptor potential (TRP) channels, we investigated the involvement of TRPA1 receptors (TRPA1) in retinal cell death induced by ischemic events.

We demonstrated the presence of TRPA1 in the chick retina, and observed an increase in TRPA1 content after OGD, both by western blot and immunohistochemistry.

In addition, the selective activation of TRPA1 by mustard oil (MO) did not worsen retinal LDH release induced by OGD, whereas the blockage of TRPA1 completely prevented the extravasation of cellular LDH in ischemic condition.

Hence, these results show that during the ischemic event there is an augment of TRPA1, and activation of this receptor is important in cell death induction.

The data also indicate that metabotropic cannabinoid receptors, both type 1 and 2, are not involved with the cell death found in the early stages of ischemia. Therefore, the study points to a potential role of TRPA1 as a target for neuroprotective approaches in retinal ischemia.”

https://www.ncbi.nlm.nih.gov/pubmed/27876485

Endocannabinoid system in sexual motivational processes: is it a novel therapeutic horizon?

Image result for pharmacological research logo

“The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana’s psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors.

For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment.

In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.”

https://www.ncbi.nlm.nih.gov/pubmed/27884725

“Cannabis As An Aphrodisiac? The Evidence Is Mounting”  https://www.civilized.life/articles/aphrodisiac-evidence-is-mounting/

Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

Image result for medicinal research reviews

“The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions.

A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years.

In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators.

A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists.

Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands.

This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators.

The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/27879006

Modulation of Type-1 and Type-2 Cannabinoid Receptors by Saffron in a Rat Model of Retinal Neurodegeneration.

Image result for plos one

“Experimental studies demonstrated that saffron (Crocus sativus) given as a dietary supplement counteracts the effects of bright continuous light (BCL) exposure in the albino rat retina, preserving both morphology and function and probably acting as a regulator of programmed cell death.

The purpose of this study was to ascertain whether the neuroprotective effect of saffron on rat retina exposed to BCL is associated with a modulation of the endocannabinoid system (ECS).

These data suggest that BCL modulates only distinct ECS elements like CB1 and CB2, and that saffron and cannabinoid receptors could share the same mechanism in order to afford retinal protection.”

Overactivation of cannabinoid receptor type 1 in rostral ventrolateral medulla promotes cardiovascular responses in spontaneously hypertensive rats.

 

Image result for J Hypertens.

“Stimulation of cannabinoid type 1 (CB1) receptor in the rostral ventrolateral medulla (RVLM) increases renal sympathetic nerve activity (RSNA) and blood pressure (BP) in rats.

Thus, we hypothesized that abnormal expression of CB1 receptor in the RVLM may play a critical role in the pathogenesis of essential hypertension.

Taken together, our results suggested that alterations of CB1 receptor desensitization in the RVLM may play a role in the pathogenesis of essential hypertension.”

https://www.ncbi.nlm.nih.gov/pubmed/27861247

Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance.

Image result for endocrine journal

“We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone.

CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity.

Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue.

CNR1 is upregulated in states of type 2 diabetes and insulin resistance.

Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis.

Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.”

https://www.ncbi.nlm.nih.gov/pubmed/27858284

A Science Based Evaluation of Cannabis and Cancer

Image result for thebmj

“The irritant properties of all smoke will naturally tend to promote a pro-inflammatory immune response with the corresponding production of potentially carcinogenic free radicals. However, cannabis promotes immune deviation to an anti-inflammatory Th2 response via immune-system specific CB2 receptors. Thus, the natural pharmacological properties of marijuana’s cannabinoids, that are not present in tobacco smoke, would minimize potential irritant initiated carcinogenesis. In contrast, the pharmacological activities of tobacco smoke would tend to amplify its carcinogenic potential by inhibiting the death of genetically damaged cells. Together these observations support the epidemiological study of the Kaiser Foundation that did not find cannabis smoking to be associated with cancer incidence. Additionally, the demonstrated cancer killing activities of cannabinoids has been ignored. Cannabinoids have been shown to kill some leukemia and lymphoma, breast and prostate, pheochromocytoma, glioma and skin cancer cells in cell culture and in animals.” http://www.bmj.com/rapid-response/2011/10/29/science-based-evaluation-cannabis-and-cancer

Highest-resolution model to date of brain receptor behind marijuana’s high

“Researchers at UT Southwestern Medical Center report the most detailed 3-D structure to date of the brain receptor that binds and responds to the chemical at the root of marijuana’s high.

Their high-resolution structure of the human cannabinoid receptor 1 (CB1) and its binding site for the chemical tetrahydrocannabinol (THC) should lead to a better understanding of how marijuana affects the brain.

The research also could aid discovery of new treatments for conditions that target the receptor, said Dr. Daniel Rosenbaum, Assistant Professor of Biophysics and Biochemistry at UT Southwestern.”

https://www.sciencedaily.com/releases/2016/11/161116131935.htm

High-resolution crystal structure of the human CB1 cannabinoid receptor.

Image result for Nature journal

“The human cannabinoid G-protein-coupled receptors (GPCRs) CB1 and CB2 mediate the functional responses to the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG), as well as the widely consumed plant (phyto)cannabinoid Δ9-tetrahydrocannabinol (THC)1. The cannabinoid receptors have been the targets of intensive drug discovery efforts owing to the therapeutic potential of modulators for controlling pain2, epilepsy3, obesity4, and other maladies. Although much progress has recently been made in understanding the biophysical properties of GPCRs, investigations of the molecular mechanisms of the cannabinoids and their receptors have lacked high-resolution structural data. We used GPCR engineering and lipidic cubic phase (LCP) crystallization to determine the structure of the human CB1 receptor bound to the inhibitor taranabant at 2.6 Å resolution. The extracellular surface of CB1, including the highly conserved membrane-proximal amino-terminal (N-terminal) region, is distinct from other lipid-activated GPCRs and forms a critical part of the ligand binding pocket. Docking studies further demonstrate how this same pocket may accommodate the cannabinoid agonist THC. Our CB1 structure provides an atomic framework for studying cannabinoid receptor function, and will aid the design and optimization of cannabinoid system modulators for therapeutic ends.”

The central cannabinoid receptor type-2 (CB2) and chronic pain.

Image result for international journal of neuroscience

“Cannabinoid receptor type-2 (CB2, CB2 Receptor, or CB2-R) mediates analgesia, via two mechanisms. CB2 receptors contained in peripheral immune tissue mediates analgesia by altering cytokine profiles, and thus has little adverse effects on central nervous systems. CB2 is also expressed in the neurons and glial cells of the Central Nervous System (CNS). This neuronal expression may also contribute to pain attenuation. The CB2 receptor has been proposed as a potential target in treating chronic pain of several etiologies.”

https://www.ncbi.nlm.nih.gov/pubmed/27842450