Study the Effect of Endocannabinoid System on Rat Behavior in Elevated Plus-Maze.

“Previous studies have shown that cannabinoidergic system is involved in anxiety.

The aim of this study is to evaluate the effect of pharmacological stimulation or blocking of CB1 receptors and inhibition of endocannabinoid degradation in anxiety like behavior in elevated plus-maze (EPM) test in rat.

It is concluded that activation of cannabinoid receptor exert anxiolytic effect while blocking of cannabinoid receptor resulted in anxiety behavior. The locomotor activity was not significantly changed by cannabinoid system.

It is suggested that potentiation of cannabinoid system may be therapeutic strategy for the anxiety behavior.”

http://www.ncbi.nlm.nih.gov/pubmed/26904171

http://www.thctotalhealthcare.com/category/anxiety-2/

Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, ‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects.

“There is good evidence that plant-derived and synthetic cannabinoids possess neuroprotective properties.

These compounds, as a result of effects upon CB(1) cannabinoid receptors, reduce the release of glutamate, and in addition reduce the influx of calcium following NMDA receptor activation.

The major obstacle to the therapeutic utilization of such compounds are their psychotropic effects, which are also brought about by actions on CB(1) receptors. However, synthesis of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, which also have neuroprotective properties, are increased under conditions of severe inflammation and ischemia, raising the possibility that compounds that prevent their metabolism may be of therapeutic utility without having the drawback of producing psychotropic effects.

In this review, the evidence indicating neuroprotective actions of plant-derived, synthetic and endogenous cannabinoids is presented. In addition, the pharmacological properties of endogenous anandamide-related compounds that are not active upon cannabinoid receptors, but which are also produced during conditions of severe inflammation and ischemia and may contribute to a neuroprotective action are reviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/12505646

Stimulation of cannabinoid CB1 receptors prevents nerve-mediated airway hyperreactivity in NGF-induced inflammation in mouse airways.

“In the present study, we tested the hypothesis that cannabinoids have both acute and chronic modulatory effects on nerve-mediated contractions in NGF-induced airway inflammation.

This study shows that stimulation of cannabinoid CB1 receptors modifies the increase of neuronal activity and density in NGF-induced airway inflammation and directly inhibits cholinergic contractions in the airways by a presynaptic mechanism.

These findings indicate a protective role of CB1 receptors in airway inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/26896777

Endocannabinoid system in the brain…and elsewhere.

“The endocannabinoid system is a complex system with endogenous ligands, synthesis and transport processes, specific receptors (CB1 and CB2) and intracellular degrading enzymes.

It is widely distributed in the central nervous system, but also in peripheral organs.

In the brain, endocannabinoids and CB1 receptors are almost ubiquitous and play a role in synaptic plasticity: they modulate, through an inhibitory retrograde action, the release of classical neurotransmitters such as amines, acetylcholine or amino acids.

They may exert a neuroprotective effect, but are also involved in appetite and alcohol/drug dependence.

At the periphery, they are present (and overexpressed in case of abdominal obesity) in various organs involved in energy control and metabolic regulation.

Furthermore, CB2 receptors are also present in the brain, although less numerous than CB1 receptors.

They could attenuate pain and also be neuroprotective.

Selective agonists, antagonists and inverse agonists of CB1 and CB2 receptors are currently developed and open new interesting therapeutic perspectives.”

http://www.ncbi.nlm.nih.gov/pubmed/18669206

The endocannabinoid system: novel pathway for cardiometabolic Risk-factor reduction.

“Although rimonabant has been approved for use in several countries, the Food and Drug Administration has expressed concern about the potential for adverse neurologic and psychiatric effects, considering the widespread distribution of CB1 receptors in the brain. While more research is clearly needed, the clinical evidence shows that CB1-receptor blockade with rimonabant improves multiple cardiovascular and metabolic variables, including body weight and waist circumference, HDL-C, triglycerides, and glucose metabolism. Furthermore, these effects, which are probably mediated by both peripheral and central actions in the ECS, appear to be greater than the improvements that would be expected from weight loss alone. There are multiple ongoing and planned studies with rimonabant as well as several other CB-receptor blockers (e.g., taranabant, CP-945,598). While diet and exercise are the cornerstones of cardiometabolic risk-factor reduction, improved pharmacotherapies are urgently needed. The ECS has provided us with new insights and a promising new avenue for the management of obesity and its associated cardiometabolic risk factors.”

http://www.ncbi.nlm.nih.gov/pubmed/18047036

The endocannabinoid system: potential for reducing cardiometabolic risk.

“The endocannabinoid system (ECS) affects multiple metabolic pathways in the brain and other organs. The transmembrane CB receptors were cloned in the early 1990s, followed shortly thereafter by the discovery of endogenous ligands, now known as endocannabinoids.

Three general types of cannabimimetic compounds have been described: herbal CBs, which occur uniquely in the cannabis plant (Cannabis sativa); endogenous CBs (or endocannabinoids), which are produced in the brain and peripheral tissues; and synthetic CBs, which are functionally similar compounds synthesized in the laboratory.

Obesity is associated with increased risk for insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, atherogenic dyslipidemia, and cardiovascular disease. Recent studies indicate that the body protects itself from weight loss by lowering energy expenditure. Both energy consumption and energy expenditure are regulated by hormones from a number of organs that act on the brain, as well as neural signals emanating from the brain itself.

Lifestyle modification is the initial intervention for obesity, with emphasis on reducing calorie intake and increasing physical activity; pharmacotherapy may be indicated for certain cardiovascular and metabolic risk factors.

This review focuses on the link between the biology of the cannabinoid receptor type 1 (CB1 receptor) system and body-weight regulation, as well as clinical data from studies of the first CB1 receptor antagonist…”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905146/

The endocannabinoid system: a new approach to control cardiovascular disease.

“The endocannabinoid (EC) system consists of 2 types of G-protein-coupled cannabinoid receptors–cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2)–and their natural ligands.

The EC system plays a key role in the regulation of food intake and fat accumulation, as well as glucose and lipid metabolism.

When overactivated, the EC system triggers dyslipidemia, thrombotic and inflammatory states, and insulin resistance.

Blocking CB1 receptors centrally and peripherally in adipose tissue can help normalize an overactivated EC system. CB1 blockade helps regulate food intake and adipose tissue metabolism, contributing to improved insulin sensitivity and other features of the metabolic syndrome.

Visceral adipose tissue is most closely associated with the metabolic syndrome, which is a constellation of conditions that place people at high risk for coronary artery disease.

Targeting the EC system represents a new approach to treating visceral obesity and reducing cardiovascular risk factors.”

Cannabinoid Receptor 2 Participates in Amyloid-β Processing in a Mouse Model of Alzheimer’s Disease but Plays a Minor Role in the Therapeutic Properties of a Cannabis-Based Medicine.

“The endogenous cannabinoid system represents a promising therapeutic target to modify neurodegenerative pathways linked to Alzheimer’s disease (AD).

The aim of the present study was to evaluate the specific contribution of CB2 receptor to the progression of AD-like pathology and its role in the positive effect of a cannabis-based medicine (1:1 combination of Δ9-tetrahidrocannabinol and cannabidiol) previously demonstrated to be beneficial in the AβPP/PS1 transgenic model of the disease.

A new mouse strain was generated by crossing AβPP/PS1 transgenic mice with CB2 knockout mice. Results show that lack of CB2 exacerbates cortical Aβ deposition and increases the levels of soluble Aβ40. However, CB2 receptor deficiency does not affect the viability of AβPP/PS1 mice, does not accelerate their memory impairment, does not modify tau hyperphosphorylation in dystrophic neurites associated to Aβ plaques, and does not attenuate the positive cognitive effect induced by the cannabis-based medicine in these animals.

These findings suggest a minor role for the CB2 receptor in the therapeutic effect of the cannabis-based medicine in AβPP/PS1 mice, but also constitute evidence of a link between CB2 receptor and Aβ processing.”

http://www.ncbi.nlm.nih.gov/pubmed/26890764

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain.

“We report the discovery of compound 4a, a potent β-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity.

Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol, and behaves as cannabinoid (CB1/CB2) receptor indirect agonist.

Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin.

Given these evidences, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/26888301

Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

“Nicotine, the main psychoactive component of tobacco, and (-)-Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior.

Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC…

Recently-developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence.

These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence.”

http://www.ncbi.nlm.nih.gov/pubmed/26888056