Cannabinoid CB1/CB2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia.

British Journal of Pharmacology

“Anorexia nervosa (AN) is a serious psychiatric condition characterized by excessive body weight loss and disturbed perceptions of body shape and size, often associated with excessive physical activity. There is currently no effective drug-related therapy of this disease and this leads to high relapse rate.

Clinical data suggest that a promising therapy to treat and reduce reoccurrence of AN may be based on the use of drugs that target the endocannabinoid (EC) system, which appears dysregulated in AN patients.

Our data show that subchronic treatment with both the CB1/CB2 receptor natural agonist Δ9-tetrahydrocannabinol and the synthetic CB1/CB2 receptor agonist CP-55,940 significantly reduced body weight loss and running wheel activity in ABA rats. These behavioral effects were accompanied by an increase in leptin signaling and a decrease in plasma levels of corticosterone.

Taken together, our results further demonstrate EC system involvement in AN pathophysiology and that strategies which modulate EC signaling are useful to treat this disorder, specifically in patients where physical hyperactivity plays a central role in its progression and maintenance.”

https://www.ncbi.nlm.nih.gov/pubmed/28561272

http://onlinelibrary.wiley.com/doi/10.1111/bph.13892/abstract

Activation of CB2 receptor system restores cognitive capacity and hippocampal Sox2 expression in a transgenic mouse model of Alzheimer’s disease.

Cover image

“Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by neuroinflammation, extensive deposits of amyloid-β aggregates, and loss of memory and cognitive abilities. The brains of patients with AD show increased expression of cannabinoid receptor type 2 (CB2) receptors and glial markers. CB2 receptors act as a negative feedback regulator; when activated by a CB2agonist, they can help limit the extent of the neuroinflammatory response and the subsequent development of neuronal damage in the central nervous system. In a double transgenic APP/PS1 mice model of AD, we evaluated the effect of MDA7, a CB2 agonist, on several neuropathological conditions of AD including amyloid deposition, inflammatory reaction, Sox2 (sex-determining region Y-box 2) expression, and spatial memory. Activation of microglia CB2 receptors by MDA7 suppressed neuroinflammation, demonstrated by decreased immunosignal of Iba1 in the hippocampal CA1 and dentate gyrus (DG) areas, promoted clearance of amyloid plaques in the DG area, restored Sox2 expression, and promoted recovery of the neuronal synaptic plasticity in hippocampal CA1. In addition, treatment with MDA7 improved the behavioral performance in the Morris water maze in APP/PS1mice. Collectively, these findings suggest that MDA7 has a potential therapeutic effect in the setting of AD.”

https://www.ncbi.nlm.nih.gov/pubmed/28551012

http://www.sciencedirect.com/science/article/pii/S0014299917303758

Single and combined effects of delta9 -tetrahydrocannabinol and cannabidiol in a mouse model of chemotherapy-induced neuropathic pain.

British Journal of Pharmacology

“It has been suggested that the non-psychoactive phytocannabinoid cannabidiol (CBD) can impact the pharmacological effects of delta-9-tetrahydrocannabinol (THC). We tested the hypothesis that CBD and THC would significantly mitigate mechanical sensitivity in a mouse model of paclitaxel-induced neuropathic pain, and that CBD+THC combinations would produce synergistic effects. We also tested the hypothesis that CBD would attenuate oxaliplatin- and vincristine- induced mechanical sensitivity.

KEY RESULTS:

Both CBD and THC alone attenuated mechanical allodynia in mice treated with paclitaxel. Very low ineffective doses of CBD and THC were synergistic when given in combination. CBD also attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity, while THC significantly attenuated vincristine- but not oxaliplatin-induced mechanical sensitivity. The low dose combination significantly attenuated oxaliplatin- but not vincristine-induced mechanical sensitivity.

CONCLUSIONS AND IMPLICATIONS:

CBD may be potent and effective at preventing the development of CIPN, and its clinical utility may be enhanced by co-administration of low doses of THC. These treatment strategies would increase the therapeutic window of Cannabis-based pharmacotherapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28548225

http://onlinelibrary.wiley.com/doi/10.1111/bph.13887/abstract

Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities.

Cover image

“Cannabinoid pharmacology has been intensely studied because of cannabis’ pervasive medicinal and non-medicinal uses as well as for the therapeutic potential of cannabinoid-based drugs for the treatment of pain, anxiety, substance abuse, obesity, cancer and neurodegenerative disorders. The identification of allosteric modulators of the cannabinoid receptor 1 (CB1) has given a new direction to the development of cannabinoid-based therapeutics due to the many advantages offered by targeting allosteric site(s). Allosteric receptor modulators hold potential to develop subtype-specific and pathway-specific therapeutics. Here we briefly discuss the first-generation of allosteric modulators of CB1 receptor, their structure-activity relationships, signaling pathways and the allosteric binding site(s) on the CB1 receptor.”

https://www.ncbi.nlm.nih.gov/pubmed/28527758

http://www.sciencedirect.com/science/article/pii/S0028390817302307

Pharmacogenetics of Cannabinoids.

 European Journal of Drug Metabolism and Pharmacokinetics

“Although the application of medical marijuana and cannabinoid drugs is controversial, it is a part of modern-day medicine.

The list of diseases in which cannabinoids are promoted as a treatment is constantly expanding. Cases of significant improvement in patients with a very poor prognosis of glioma or epilepsy have already been described. However, the occurrence of side effects is still difficult to estimate, and the current knowledge of the therapeutic effects of cannabinoids is still insufficient.

In our opinion, the answers to many questions and concerns regarding the medical use of cannabis can be provided by pharmacogenetics. Knowledge based on proteins and molecules involved in the transport, action, and metabolism of cannabinoids in the human organism leads us to predict candidate genes which variations are responsible for the presence of the therapeutic and side effects of medical marijuana and cannabinoid-based drugs.

We can divide them into: receptor genes-CNR1, CNR2, TRPV1, and GPR55, transporters-ABCB1, ABCG2, SLC6A, biotransformation, biosynthesis, and bioactivation proteins encoded by CYP3A4, CYP2C19, CYP2C9, CYP2A6, CYP1A1, COMT, FAAH, COX2, ABHD6, ABHD12 genes, and also MAPK14. This review organizes the current knowledge in the context of cannabinoids pharmacogenetics according to individualized medicine and cannabinoid drugs therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/28534260

“There is a feeling that the next milestone, after legal acceptance of medical marijuana, will be intensive pharmacogenetic-oriented study of individual populations, which hopefully explain the previous contradictory results and identify in the future genetic markers to personalize cannabinoids treatment.” https://link.springer.com/article/10.1007%2Fs13318-017-0416-z

 

Correlation Between Cannabidiol-Induced Reduction of Infarct Volume and Inflammatory Factors Expression in Ischemic Stroke Model.

Image result for Basic Clin Neurosci.

“Recent studies demonstrated that cannabidiol had neuroprotective property. There is some evidence about effective role of cannabidiol in reduction of ischemic damages. It has been reported that infarct size is influenced by various factors after MCAO, including inflammatory factors. The aim of the present study was to evaluate the effect of cannabidiol on infarction volume and correlation of infarct size with tumor necrosis factor receptor 1 (TNFR1), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression.

RESULTS:

The present results indicate that in the MCAO-induced cerebral ischemia, administration of cannabidiol (100 and 200 ng/rat) causes a significant reduction in infarction volume in comparison with the vehicle group. Also, there were significant correlations between decrease of regional infarct volume and TNFR1/NF-κB expression.

CONCLUSION:

The results of this study indicate that cannabidiol reduced cerebral infarction possibly through diminishing TNFR1/NF-κB-induced neurotoxicity in transient focal cerebral ischemia.”

Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

Image result for new england journal of medicine

“BACKGROUND

The Dravet syndrome is a complex childhood epilepsy disorder that is associated with drug-resistant seizures and a high mortality rate. We studied cannabidiol for the treatment of drug-resistant seizures in the Dravet syndrome.

METHODS

In this double-blind, placebo-controlled trial, we randomly assigned 120 children and young adults with the Dravet syndrome and drug-resistant seizures to receive either cannabidiol oral solution at a dose of 20 mg per kilogram of body weight per day or placebo, in addition to standard antiepileptic treatment. The primary end point was the change in convulsive-seizure frequency over a 14-week treatment period, as compared with a 4-week baseline period.

RESULTS

The median frequency of convulsive seizures per month decreased from 12.4 to 5.9 with cannabidiol, as compared with a decrease from 14.9 to 14.1 with placebo (adjusted median difference between the cannabidiol group and the placebo group in change in seizure frequency, −22.8 percentage points; 95% confidence interval [CI], −41.1 to −5.4; P=0.01). The percentage of patients who had at least a 50% reduction in convulsive-seizure frequency was 43% with cannabidiol and 27% with placebo (odds ratio, 2.00; 95% CI, 0.93 to 4.30; P=0.08). The patient’s overall condition improved by at least one category on the seven-category Caregiver Global Impression of Change scale in 62% of the cannabidiol group as compared with 34% of the placebo group (P=0.02). The frequency of total seizures of all types was significantly reduced with cannabidiol (P=0.03), but there was no significant reduction in nonconvulsive seizures. The percentage of patients who became seizure-free was 5% with cannabidiol and 0% with placebo (P=0.08). Adverse events that occurred more frequently in the cannabidiol group than in the placebo group included diarrhea, vomiting, fatigue, pyrexia, somnolence, and abnormal results on liver-function tests. There were more withdrawals from the trial in the cannabidiol group.

CONCLUSIONS

Among patients with the Dravet syndrome, cannabidiol resulted in a greater reduction in convulsive-seizure frequency than placebo and was associated with higher rates of adverse events. (Funded by GW Pharmaceuticals; ClinicalTrials.gov number, NCT02091375.)”

http://www.nejm.org/doi/10.1056/NEJMoa1611618

“Cannabinoids for Epilepsy — Real Data, at Last”  http://www.nejm.org/doi/full/10.1056/NEJMe1702205

“Cannabidiol (CBD) Significantly Reduces Convulsive Seizure Frequency in Dravet Syndrome (DS): Results of a Multi-center, Randomized, Double-blind, Placebo-controlled Trial (GWPCARE1)” http://files.shareholder.com/downloads/AMDA-1TW341/201889199x0x919787/73B57FA6-CD45-4ABB-8C89-87EFEA36B4ED/1332B_AES_Poster_Dravet_Part_B_.pdf

“EPILEPSY AND MARIJUANA: CANNABIS DRUG REDUCES DRAVET SYNDROME SEIZURES IN LARGE-SCALE CLINICAL TRIAL” http://www.newsweek.com/cannabis-marijuana-dravet-syndrome-epilepsy-clinical-trial-614982

“Study proves medicinal cannabis can help children with severe epilepsy, researchers say” http://www.abc.net.au/news/2017-05-25/scientific-study-medicinal-cannabis-helps-children-with-epilepsy/8556180
 

Cannabidiol in Medical Marijuana: Research Vistas and Potential Opportunities.

Cover image

“The high and increasing prevalence of medical marijuana consumption in the general population invites the need for quality evidence regarding its safety and efficacy. Herein, we synthesize extant literature pertaining to the phytocannabinoid cannabidiol (CBD) and its brain effects.

The principle phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) and CBD are the major pharmacologically active cannabinoids. The effect of CBD on brain systems as well as on phenomenological measures (e.g. cognitive function) are distinct and in many cases opposite to that of Δ9-THC.

Cannabidiol is without euphoriant properties, and exerts antipsychotic, anxiolytic, anti-seizure, as well as anti-inflammatory properties.

It is essential to parcellate phytocannabinoids into their constituent moieties as the most abundant cannabinoid have differential effects on physiologic systems in psychopathology measures. Disparate findings and reports related to effects of cannabis consumption reflect differential relative concentration of Δ9-THC and CBD.

Existing literature, notwithstanding its deficiencies, provides empirical support for the hypothesis that CBD may exert beneficial effects on brain effector systems/substrates subserving domain-based phenomenology. Interventional studies with purified CBD are warranted with a call to target-engagement proof-of-principle studies using the research domain criteria (RDoC) framework.” https://www.ncbi.nlm.nih.gov/pubmed/28501518

http://www.sciencedirect.com/science/article/pii/S1043661817303559

Evaluation of Cannabidiol in Animal Seizure Models by the Epilepsy Therapy Screening Program (ETSP).

Neurochemical Research

“Cannabidiol (CBD) is a cannabinoid component of marijuana that has no significant activity at cannabinoid receptors or psychoactive effects. There is considerable interest in CBD as a therapy for epilepsy.

Almost a third of epilepsy patients are not adequately controlled by clinically available anti-seizure drugs (ASDs). Initial studies appear to demonstrate that CBD preparations may be a useful treatment for pharmacoresistant epilepsy.

The National Institute of Neurological Disorders and Stroke (NINDS) funded Epilepsy Therapy Screening Program (ETSP) investigated CBD in a battery of seizure models using a refocused screening protocol aimed at identifying pharmacotherapies to address the unmet need in pharmacoresistant epilepsy. Applying this new screening workflow, CBD was investigated in mouse 6 Hz 44 mA, maximal electroshock (MES), corneal kindling models and rat MES and lamotrigine-resistant amygdala kindling models.

Following intraperitoneal (i.p.) pretreatment, CBD produced dose-dependent protection in the acute seizure models; mouse 6 Hz 44 mA (ED50 164 mg/kg), mouse MES (ED50 83.5 mg/kg) and rat MES (ED50 88.9 mg/kg). In chronic models, CBD produced dose-dependent protection in the corneal kindled mouse (ED50 119 mg/kg) but CBD (up to 300 mg/kg) was not protective in the lamotrigine-resistant amygdala kindled rat. Motor impairment assessed in conjunction with the acute seizure models showed that CBD exerted seizure protection at non-impairing doses.

The ETSP investigation demonstrates that CBD exhibits anti-seizure properties in acute seizure models and the corneal kindled mouse. However, further preclinical and clinical studies are needed to determine the potential for CBD to address the unmet needs in pharmacoresistant epilepsy.”  https://www.ncbi.nlm.nih.gov/pubmed/28478594

Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats.

Cover image

“Cannabidiol (CBD) is a cannabinoid component from Cannabis sativa that does not induce psychotomimetic effects and possess anti-inflammatory properties.  In the present study we tested the effects of CBD in a periodontitis experimental model in rats. Morphometrical analysis of alveolar bone loss demonstrated that CBD-treated animals presented a decreased alveolar bone loss. These results indicate that CBD may be useful to control bone resorption during progression of experimental periodontitis in rats.” https://www.ncbi.nlm.nih.gov/pubmed/19070683