Chemicals in Marijuana May Help Stroke Victims

NewsBriefs

“Scientists at the National Institute of Mental Health (NIMH) said a chemical in marijuana may protect the brain from damage inflicted by a stroke.

Their study was reported in the Proceedings of the National Academy of Sciences (Aidan Hampson, et al., “Cannabidiol and Delta-9-tetrahydrocannabinol Are Neuroprotective Antioxidants,” Proceedings of the National Academy of Sciences, July 7, 1998, Vol. 95, Issue 14, p. 8268; “Pot Chemicals Might Inhibit Breast Tumors, Stroke Damage,” Dallas Morning News, July 13, 1998; Vanessa Thorpe, “Chemicals Help Brain Damage After Stroke,” The Independent (UK), July 19, 1998).

NIMH scientists researched the effects of two cannabinoids, cannabidiol and THC, on the brains of rats. THC is the ingredient in marijuana that causes a psychoactive effect. However, cannabidiol is “a better candidate,” in part, because it does not cause a “high” in the patient, said Aidan Hampson, a neuropharmacologist at NIMH who led the study.

The cannabinoids block a neurochemical, known as glutamate, that leads to the formation of toxic oxidizing molecules that kill brain cells. Glutamate is produced in the brain if the oxygen supply is cut off, for example, as the result of blood clot leading to a stroke.

Researchers found that cannabidiol is a more effective antioxidant than vitamins A and E, which already are known to block the damaging effects of glutamate.”

http://www.ndsn.org/julaug98/medmj1.html

Cannabis Counter Brain Cell Damage After a Stroke

“New research by University of Otago scientists suggests some mechanisms in the brain targeted by cannabis could become drugs targets to counter brain cell damage after a stroke.

Researchers from the Medical School’s Department of Pharmacology and Toxicology have been the first in the world to show the cannabinoid CB2 receptor appears in the rat brain following a stroke.

Their findings were published recently in the journal Neuroscience Letters.

Dr John Ashton says the CB2 receptor is a protein produced as part of the body’s immune response system.

“This response is triggered by stroke and causes the inflammation that leads to damage in the area of the brain around where the stroke has occurred.

“If the inflammation can be stopped or reduced then it offers the hope of reducing the extent of the damage caused by stroke – and CB2 offers a potential target for such a drug.”

Dr Ashton says cannabis targets both the CB2 and the related CB1 receptors.

“THC, the major active ingredient of cannabis, acts mainly on CB1 but it also affects CB2. While THC is known to have some positive effects in terms of pain management its use is severely limited because of the way it triggers the psychoactive CB1 receptors in the brain,” he says.

“The aim would be to develop a drug that targets the CB2 receptor without affecting CB1.”

Dr Ashton says the relationship between cannabis and cannabinoid drugs has similarities to the relationship between heroin and codeine.

“Heroin and codeine share common targets, but by designing codeine in such a way that it eliminated the psychoactive side-effects seen with heroin, a therapeutically useful drug was developed. There is the potential to do the same with cannabinoids.”

Drugs targeting CB2 could also have potential therapeutic use in other conditions involving inflammatory damage to the brain, such as Huntington’s Disease and Alzheimer’s Disease. There may also be scope to use them in pain management.

“CB2 cells are also found in the spinal cord. They regulate pain signals making them a potential target for new pain killing drugs.””

http://www.hightimes.com/read/cannabis-counter-brain-cell-damage-after-stroke

A Vapourized Δ9-Tetrahydrocannabinol (Δ9-THC) Delivery System Part II: Comparison of Behavioural Effects of Pulmonary Versus Parenteral Cannabinoid Exposure in Rodents.

“These results suggest vapourized Δ9-THC administration produces behavioural effects qualitatively different from those induced by IP administration in rodents. Furthermore, vapourized Δ9-THC delivery in rodents may produce behavioural effects more comparable to those observed in humans. We conclude that some of the conflicting findings in animal and human cannabinoid studies may be related to pharmacokinetic differences associated with route of administration.”

http://www.ncbi.nlm.nih.gov/pubmed/24956154

Preliminary, Open-Label, Pilot Study of Add-On Oral Δ9-Tetrahydrocannabinol in Chronic Post-Traumatic Stress Disorder.

“Marijuana is often used as compassion add-on therapy for treatment-resistant PTSD.

This open-label study evaluates the tolerance and safety of orally absorbable Δ9-tetrahydrocannabinol (THC) for chronic PTSD.

RESULTS:

There were mild adverse effects in three patients, none of which led to treatment discontinuation. The intervention caused a statistically significant improvement in global symptom severity, sleep quality, frequency of nightmares, and PTSD hyperarousal symptoms.

CONCLUSIONS:

Orally absorbable Δ9-THC was safe and well tolerated by patients with chronic PTSD.”

http://www.ncbi.nlm.nih.gov/pubmed/24935052

http://www.thctotalhealthcare.com/category/post-traumatic-stress-disorder-ptsd/

Vaporized Cannabis for Chronic Pain Associated With Sickle Cell Disease (Cannabis-SCD) -ClinicalTrials.gov Identifier: NCT01771731

“Cannabinoid-Based Therapy and Approaches to Quantify Pain in Sickle Cell Disease.

Our primary objective is to assess whether inhaling vaporized cannabis ameliorates chronic pain in patients with sickle cell disease (SCD). As these patients will all be on chronic opioid analgesics, the investigators will also assess the possible synergistic affect between inhaled cannabis and opioids.

The investigators will also assess the clinical safety of the concomitant use of cannabinoids and these opioids in patients with SCD by monitoring the short-term side effects associated with combined therapy.

Finally, the investigators will evaluate the short-term effects of inhaled cannabis on markers of inflammation and disease progression in patients with SCD.

Hypotheses are as follows:

  1. Inhaled cannabis will significantly reduce chronic pain in patients with SCD.
  2. Inhaled cannabis will significantly alter the short-term side effects experienced by patients who take opioids for SCD.
  3. Inhaled cannabis will significantly alter markers of inflammation and disease progression in patients with SCD compared to placebo.
Subjects will complete a 5-day pain diary prior to admission to the Clinical Research Center (CRC) to establish a baseline of pain. They will then be assigned to inhale either vaporized cannabis of mixed THC/CBD content (4.7% THC/5.1% CBD) or placebo cannabis (0% THC/0% CBD). Participants and personnel will be blinded as to assignment. Pain will be evaluated during the 5-day inpatient exposure. Participants will be asked to participate in two such 5-day sessions separated by at least a 2-week washout so that each will be exposed to the two experimental conditions.
Detailed Description:

This is a proof-of-principle investigation of the safety and potential effectiveness of inhaled vaporized cannabis when added to a stable analgesic regimen in sickle cell disease (SCD) patients with chronic pain. The study will be comprised of two 5-day intervention periods in the inpatient setting (the Clinical Research Center at SFGH), with completion of a 5-day daily pain diary prior to admission to establish an outpatient baseline. Participants will be randomly assigned, in double-blind fashion, to treatment with (A) vaporized cannabis with an approximately 1:1 ration of delta-9-tetrahydrocannabinol:cannabidiol or (B) vaporized placebo. Those who receive treatment A during the first admission will receive treatment B in the second, and those who receive treatment B during the first admission will receive treatment A in the second. The two admissions will be spaced at least 14 days apart.

On Day 1 of each admission, subjects will provide blood samples for baseline markers of inflammation and SCD disease progression. They will undergo assessments of pain, mood, and quality of life. At 12 pm on Day 1, they will inhale vaporized study agent (equivalent to 1 cannabis/placebo cigarette) using the Volcano® vaporizer; on Days 2-4 they will inhale study agent at 8 am, 2 pm, and 8 pm, and they will inhale their final dose on Day 5 at 8 am. Subjects will continue their pre-study analgesic regimen while in the study. If additional analgesia is required, supplemental therapy will be administered and the dose recorded. Pain measurements by visual analogue scale will be obtained every 2 hours while subjects are awake. On Day 5 a second set of blood samples for inflammation markers and disease progression will be obtained, and subjects will again complete pain, mood, and quality of life assessments.”

http://www.clinicaltrials.gov/ct2/show/study/NCT01771731#contacts

THC Can Manage Sickle Cell Disease

“Cannabinoids, the active ingredients in pot offer a new way to treat chronic and acute pain from sickle cell disease, ScienceDaily reports.

Currently the only treatment for the blood disease is opiods.

“Pain in SCD is described to be more intense than labor pain. The pain starts early in a patient’s life, often during infancy, and increases in severity with age.

[Cannibinoids are] effective in much lower amounts than opioids — the only currently approved treatment for this disease.”

http://www.eastbayexpress.com/LegalizationNation/archives/2010/07/23/daily-roundup-thc-can-manage-sickle-cell-disease-oakland-tweaks-medical-cannabis-taxes

Sickle Cell Pain May be Managed with Cannabis

“Can Medical Cannabis Help to Cure SCD?”

Sickle Cell Disease Pain May Be Managed 2

“Sickle cell disease (SCD) is a hereditary condition caused by a mutation in the haemoglobin gene, which leads to symptoms of anaemia, extreme pain, and organ damage if unmanaged.”

Sickle Cell Disease Pain May Be Managed 1

“Individuals suffering from SCD are far more likely to use cannabis than the general population, potentially for its analgesic properties.

In 2010, researchers at the University of Minnesota found that the synthetic THC analogue CP 55,940 was as effective as morphine sulphate in treating SCD-related severe pain in transgenic mice expressing human sickle haemoglobin, and that it was effective at smaller doses than the opioid.

In 2011, a further paper submitted by the same researchers to Blood (the Journal of the American Association of Hematology) indicated that CP 55,940 ameliorated severe pain associated with the hypoxia/reoxygenation cycle. CP 55,940 is a full agonist of both CB receptors, and is thought to act as an antagonist at the GPR55 receptor.

As well as this, cannabis has been repeatedly shown to act as a vasodilator, which could in itself assist in easing the blockages caused by build-up of sickle cells…

SCD is a painful and debilitating disease, and the overall inefficacy of opioid treatments and resultant poor quality of life for many sufferers is an indication that our approach to it is far from perfect.

If cannabis is a good candidate to replace opioids, it should be implemented forthwith to prevent ongoing suffering for existing patients.”

http://sensiseeds.com/en/blog/sickle-cell-pain-may-managed-cannabis/

Cannabinoids Destroy Leukemia Cells, New Study Finds

(Photo: Alternative Medicine Solutions)

“New research from the University of London suggests chemicals in marijuana could be used to fight leukemia.

Published online in Anticancer Research, researchers at the Department of Oncology at St. George’s, University of London studied six different cannabinoids and found each to have anti-cancer action in leukemia cells.

Lead author Wai Liu, Ph.D explained the results of the latest study in Monday’s press release.

These agents are able to interfere with the development of cancerous cells, stopping them in their tracks and preventing them from growing. In some cases, by using specific dosage patterns, they can destroy cancer cells on their own.

The scientists were able to replicate previous findings on the anti-cancer effects of THC – the compound in marijuana responsible for the high.

However, in the latest study, Dr. Liu’s team decided to focus on cannabinoids that lacked psychoactive activity, including cannabidiol (CBD), cannabigerol (CBG) and cannabigevarin (CBGV).

This study is a critical step in unpicking the mysteries of cannabis as a source of medicine. The cannabinoids examined have minimal, if any, hallucinogenic side effects, and their properties as anti-cancer agents are promising.

The non-psychoactive cannabinoids were shown to inhibit growth of leukemia cells at all stages of the cell cycle. Interestingly, the team observed even greater effects when different cannabinoids were administered together.

“These compounds are inexpensive to produce”

Dr. Liu says drugs derived from cannabis are much cheaper to produce than traditional cancer therapies. He also thinks they could be combined with existing treatments to enhance their effects.

Used in combination with existing treatment, we could discover some highly effective strategies for tackling cancer. Significantly, these compounds are inexpensive to produce and making better use of their unique properties could result in much more cost effective anti-cancer drugs in future.

Dr. Liu’s next study will investigate the potential of cannabinoids when combined with existing treatments as well as different treatment schedules that could maximize their anti-cancer activity.”

http://www.leafscience.com/2013/10/14/cannabinoids-destroy-leukemia-cells-new-study-finds/

http://www.thctotalhealthcare.com/category/leukemia/

Targeting multiple cannabinoid antitumor pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer.

“The psychoactive cannabinoid Δ9 -tetrahydrocannabinol (THC) and the non-psychoactive cannabinoid cannabidiol(CBD) can both reduce cancer progression each through distinct antitumor pathways.

Our goal was to discover a compound that could efficiently target both cannabinoid antitumor pathways.

KEY RESULTS:

CBD reduced breast cancer metastasis in advanced stages of the disease as the direct result of down-regulating the transcriptional regulator Id1. However, this was associated with moderate increases in survival. We therefore screened for analogs that could co-target cannabinoid antitumor pathways (CBD- and THC-associated) and discovered the compound O-1663. This analog inhibited Id1, produced a marked stimulation of ROS, upregulated autophagy, and induced apoptosis. Of all compounds tested, it was the most potent at inhibiting breast cancer cell proliferation and invasion in culture and metastasis in vivo.

CONCLUSIONS AND IMPLICATIONS:

O-1663 prolonged survival in advanced stages of breast cancer metastasis. Developing compounds that can simultaneously target multiple cannabinoid antitumor pathways efficiently may provide a novel approach for the treatment of patients with metastatic breast cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/24910342

“Anti-cancer effects of resorcinol derivatives on ascitic and solid forms of Ehrlich carcinoma in mice.” http://www.ncbi.nlm.nih.gov/pubmed/13774935

“Ardisiphenol D, a resorcinol derivative identified from Ardisia brevicaulis, exerts antitumor effect through inducing apoptosis in human non-small-cell lung cancer A549 cells.” http://www.ncbi.nlm.nih.gov/pubmed/24392814

“Antitumor effect of resorcinol derivatives from the roots of Ardisia brevicaulis by inducing apoptosis.” http://www.ncbi.nlm.nih.gov/pubmed/21751842

“Resorcinol derivatives from Ardisia maculosa.”  http://www.ncbi.nlm.nih.gov/pubmed/17885843

“Cannabidiol (CBD) is among the major secondary metabolites of Cannabis devoid of the delta-9-tetra-hydrocannabinol psychoactive effects. It is a resorcinol-based compound with a broad spectrum of potential therapeutic properties, including neuroprotective effects in numerous pathological conditions.” https://www.ncbi.nlm.nih.gov/pubmed/28412918

http://www.thctotalhealthcare.com/category/breast-cancer/

Cannabis oil from marijuana is having success treating COPD

COPD

“COPD is the often used term for “Chronic Obstructive Pulmonary Disease,” a rather clumsy and vague description for most of us. It includes a few different lung issues, such as emphysema, bronchiectasis and chronic bronchitis. The scary part is that it’s a mystery to our pharmaceutical-dependent medical system. And it gets progressively worse, often leading to death.

It’s third in disease death rates, behind only heart disease and cancer. COPD creates constricted airways in one’s lungs or renders small lung sacks inelastic and unable to fully accommodate breathing cycles; thus, there is obstruction.

COPD symptoms include some or all of the following: losing one’s breath with minor activity, chronic coughing, increased sputum, chest tightness or pain with difficulty breathing, increased lung infections and fatigue. It has been observed to have four stages. Many of those lugging oxygen canisters around are in the last two stages.

The pharmaceuticals prescribed for treating symptoms often have side effects that cause more problems. Big Pharma is still fishing for cures, while COPD diagnoses rates continue rising in our toxic environment.

Medical marijuana to the rescue once again

The treatment situation is so bleak and harmful with mainstream medicine that those desperate to breathe normally and cough up less mucus have desperately turned to medical marijuana for at least some relief without negative side effects.

Smoking marijuana cigarettes is shunned for obvious reasons, but many claim that vaping, or using a vaporizer to inhale cannabis, is useful for COPD without exacerbating the lungs’ inflammatory condition.

But better results have been achieved by ingesting cannabis, especially the potent, highly condensed oil extract that Rick Simpson pioneered in Canada and now in Eastern Europe. Many medical marijuana advocates, especially those in medical-cannabis-friendly states, have learned to make the oil and provide it to those in need.

Most of the cannabis treatment publicity has gone toward cancer, Crohn’s disease, chronic epileptic seizures and glaucoma. Even Parkinson’s disease and multiple sclerosis victims have experienced positive results from various cannabis products with THC applications.

Pharmaceutical-dependent mainstream medicine hasn’t been able to cure any of these diseases or even alleviate symptoms without creating complications, some fatal.

More COPD patients have hopped on the cannabis cure bandwagon with positive results lately. These results include folks with late-stage COPD and severe emphysema.

An anecdotal sampling

At the relatively young age of 36, Jeff Waters was diagnosed with COPD. Eight years later he had to be rushed to an ER during another bout with bronchitis.

Lung scarring was discovered, and his condition was raised to stage 2 COPD. While prescribing several pharmaceuticals, the doctor told him that it would continue to get worse and eventually kill him.

Jeff did continue to get worse. He was unable to climb a flight of stairs and he wound up with stage 3 COPD and an oxygen canister to prove it. Showering and shaving without his oxygen supply turned out to be almost too arduous of a task.

Then an allergic reaction to a prescribed high blood pressure medication put him on life support in ICU with severe pneumonia for a month. After his recovery, he resolved to handle his COPD without mainstream medical interventions.

Jeff found COPD sufferers online who had resolved their COPD issues with cannabis oil. He networked with them and found his own sources for cannabis oil.

After only two months of using the oil, Jeff went off oxygen and all the pharmaceuticals he had been prescribed. He now walks two to five miles daily and claims that cannabis oil has allowed him “to get his life back.””

http://www.naturalnews.com/044664_cannabis_oil_copd_marijuana.html

http://www.thctotalhealthcare.com/category/copd-chronic-obstructive-pulmonary-disease/