The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

“Sativex®, an equimolecular combination of Δ9-tetrahydrocannabinol-botanical drug substance (Δ9-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain.

However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components.

In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice.

We compared the effect of a Sativex-like combination of Δ9-THC-BDS (10mg/kg) and CBD-BDS (10mg/kg) with Δ9-THC-BDS (20mg/kg) or CBD-BDS (20mg/kg) administered separately by intraperitoneal administration to EAE mice.

Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease.

The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS.

These effects were completely reproduced by the treatment with Δ9-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord.

Next, we investigated the potential targets involved in the effects of Δ9-THC-BDS by selectively blocking CB1 or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB1 receptor antagonist.

Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ9-THC-BDS acting through CB1 receptors.”

A new formulation of cannabidiol in cream shows therapeutic effects in a mouse model of experimental autoimmune encephalomyelitis.

“The present study was designed to investigate the efficacy of a new formulation of alone, purified cannabidiol (CBD) (>98 %), the main non-psychotropic cannabinoid of Cannabis sativa, as a topical treatment in an experimental model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS)…

All these data suggest an interesting new profile of CBD that could lead to its introduction in the clinical management of MS and its associated symptoms at least in association with current conventional therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26489494

“Summarizing, we have shown that the topical administration of CBD can protect against the cascade of events (inflammation, oxidative injury and neuronal cell death) associated to the induction of EAE. Of note, topical CBD application was able to recover the hind limb lost sensitivity. This observation provides a rationale for evaluating its clinical translation that might represent a new concept in the management of MS. Finally, we suggest that CBD, devoid of psychoactive activity, could be potentially, safe and effective non invasive alternatives for alleviating neuroinflammation and neurodegeneration.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618347/

HU-446 and HU-465, derivatives of the non-psychoactive cannabinoid cannabidiol, decrease the activation of encephalitogenic T cells.

“Cannabidiol (CBD), the non-psychoactive cannabinoid, has been previously shown by us to decrease peripheral inflammation and neuroinflammation in mouse experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS).

Here we have studied the anti-inflammatory effects of newly synthesized derivatives of natural (-)-CBD ((-)-8,9-dihydro-7-hydroxy-CBD; HU-446) and of synthetic (+)-CBD ((+)-8,9-dihydro-7-hydroxy-CBD; HU-465)…

These results suggest that HU-446 and HU-465 have anti-inflammatory potential in inflammatory and autoimmune diseases. ”

http://www.ncbi.nlm.nih.gov/pubmed/26259697

Preclinical evaluation of SMM-189, a cannabinoid receptor 2-specific inverse agonist.

“Cannabinoid receptor 2 agonists and inverse agonists are emerging as new therapeutic options for a spectrum of autoimmune-related disease.

Of particular interest, is the ability of CB2 ligands to regulate microglia function in neurodegenerative diseases and traumatic brain injury.

We have previously reported the receptor affinity of 3′,5′-dichloro-2,6-dihydroxy-biphenyl-4-yl)-phenyl-methanone (SMM-189) and the characterization of the beneficial effects of SMM-189 in the mouse model of mild traumatic brain injury.

Herein, we report the further characterization of SMM-189 as a potent and selective CB2 inverse agonist, which acts as a noncompetitive inhibitor of CP 55,940.

The ability of SMM-189 to regulate microglial activation, in terms of chemokine expression and cell morphology, has been determined.

Finally, we have determined that SMM-189 possesses acceptable biopharmaceutical properties indicating that the triaryl class of CB2 inverse agonists are viable compounds for continued preclinical development for the treatment of neurodegenerative disorders and traumatic brain injury.”

http://www.ncbi.nlm.nih.gov/pubmed/26196013

Cannabinoids Inhibit T-cells via Cannabinoid Receptor 2 in an in vitro Assay for Graft Rejection, the Mixed Lymphocyte Reaction

Logo of nihpa

 

“Cannabinoids are known to have anti-inflammatory and immunomodulatory properties.

Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes.

This study tested the capacity of Δ9-tetrahydrocannabinol (Δ9-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ9-THC significantly suppressed the MLR in a dose dependent fashion…

Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients.

Cannabinoids were reported to have effects on immune responses as early as the 1970s, but the basis for this activity was not understood until the cannabinoid receptors were cloned

Ideally, the anatomically disparate expression of CB1 and CB2 would allow for the use of compounds selective for CB2, and thus eliminate the unwanted psychoactive effects from CB1 activation, while maintaining the anti-inflammatory and immunosuppressive properties.

CB2-selective cannabinoids have been proposed as possible candidates to block graft rejection.

The results presented in this paper show that Δ9-THC, a mixed CB1/CB2 agonist, and two CB2-selective agonists can inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ and skin graft rejection.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864984/

Cannabidiol, a non-psychoactive cannabinoid, leads to EGR2-dependent anergy in activated encephalitogenic T cells.

“Cannabidiol (CBD), the main non-psychoactive cannabinoid, has been previously shown by us to ameliorate clinical symptoms and to decrease inflammation in myelin oligodendrocyte glycoprotein (MOG)35-55-induced mouse experimental autoimmune encephalomyelitis model of multiple sclerosis as well as to decrease MOG35-55-induced T cell proliferation and IL-17 secretion. However, the mechanisms of CBD anti-inflammatory activities are unclear.

We found that CBD leads to upregulation of CD69 and lymphocyte-activation gene 3 (LAG3) regulatory molecules on CD4+CD25-accessory T cells. This subtype of CD4+CD25-CD69+LAG3+ T cells has been recognized as induced regulatory phenotype promoting anergy in activated T cells.

Indeed, we observed that CBD treatment results in upregulation of EGR2 (a key T cell anergy inducer) mRNA transcription in stimulated TMOG cells. This was accompanied by elevated levels of anergy promoting genes such as IL-10 (anti-inflammatory cytokine), STAT5 (regulatory factor), and LAG3 mRNAs, as well as of several enhancers of cell cycle arrest (such as Nfatc1, Casp4, Cdkn1a, and Icos).

Moreover, CBD exposure leads to a decrease in STAT3 and to an increase in STAT5 phosphorylation in TMOG cells, positive and negative regulators of Th17 activity, respectively. In parallel, we observed decreased levels of major histocompatibility complex class II (MHCII), CD25, and CD69 on CD19+ B cells following CBD treatment, showing diminished antigen presenting capabilities of B cells and reduction in their pro-inflammatory functions.

CONCLUSIONS:

Our data suggests that CBD exerts its immunoregulatory effects via induction of CD4+CD25-CD69+LAG3+ cells in MOG35-55-activated APC/TMOG co-cultures. This is accompanied by EGR2-dependent anergy of stimulated TMOG cells as well as a switch in their intracellular STAT3/STAT5 activation balance leading to the previously observed decrease in Th17 activity.”

http://www.ncbi.nlm.nih.gov/pubmed/25880134

Full-text: http://www.jneuroinflammation.com/content/12/1/52

Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites.

“2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation.

Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory.

2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids.

In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions.

This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/25877930

Effects of Cannabinoids on T-cell Function and Resistance to Infection.

“This review examines the effects of cannabinoids on immune function, with a focus on effects on T-cells, as well as on resistance to infection. The paper considers the immune modulating capacity of marijuana, of ∆9-THC extracted from the marijuana plant, and synthetic cannabinoids…

The overall conclusion of the studies discussed in this review is that cannabinoids that bind to the CB2 receptor, including ∆9-THC and CB2 selective agonists are immunosuppressive.

The studies provide objective evidence for potentially beneficial effects of marijuana and ∆9-THC on the immune system in conditions where it is desirable to dampen immune responses.

An emerging area of investigation that is reviewed is evidence to support the conclusion that CB2 selective agonists are a new class of immunosuppressive and anti-inflammatory compounds that may have exceptional beneficial effects in a variety of conditions, such as autoimmune diseases and graft rejection, where it is desirable to dampen the immune response without psychoactive effects.”

http://www.ncbi.nlm.nih.gov/pubmed/25876735

http://www.thctotalhealthcare.com/category/autoimmune-disease/

Antagonism of cannabinoid receptor 2 pathway suppresses IL-6-induced immunoglobulin IgM secretion.

“Cannabinoid receptor 2 (CB2) is expressed predominantly in the immune system, particularly in plasma cells, raising the possibility that targeting the CB2 pathway could yield an immunomodulatory effect.

Although the role of CB2 in mediating immunoglobulin class switching has been reported, the effects of targeting the CB2 pathway on immunoglobulin secretion per se remain unclear…

These results uncover a novel function of CB2 antagonists and suggest that CB2 ligands may be potential modulators of immunoglobulin secretion.”

Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders.

Publication cover image

“Immune system responsiveness results from numerous factors, including endogenous cannabinoid signaling in immunocytes termed the “immunocannabinoid” system. This system can be an important signaling pathway for immune modulation.

To assess the immunomodulating role of the cannabinoid 2 (CB2) receptor, we sought polymorphisms in the human gene, identified a common dinucleotide polymorphism, and investigated its effect on endocannabinoid-induced inhibition of T lymphocyte proliferation.

Collectively, these results demonstrate reduced endogenous fatty acid amide immunomodulatory responses in individuals with the CB2 188-189 GG/GG genotype and suggest that this CB2 gene variation may be a risk factor for autoimmunity.

The results also support the proposition that the CB2 receptor may represent a novel pharmacological target for selective agonists designed to suppress autoreactive immune responses”

https://jlb.onlinelibrary.wiley.com/doi/full/10.1189/jlb.0205111

https://www.ncbi.nlm.nih.gov/pubmed/15845647