Cannabinoid system in the skin – a possible target for future therapies in dermatology.

“Cannabinoids and their derivatives are group of more than 60 biologically active chemical agents, which have been used in natural medicine for centuries.

The major agent of exogenous cannabinoids is Delta(9)-tetrahydrocannabinol (Delta(9)-THC), natural psychoactive ingredient of marijuana.

Recent discoveries of endogenous cannabinoids (e.g. arachidonoylethanolamide, 2-arachidonoylglycerol or palmithyloethanolamide) and their receptors initiated discussion on the role of cannabinoid system in physiological conditions as well as in various diseases.

Based on the current knowledge, it could be stated that cannabinoids are important mediators in the skin, however their role have not been well elucidated yet.

In our review, we summarized the current knowledge about the significant role of the cannabinoid system in the cutaneous physiology and pathology, pointing out possible future therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pubmed/19664006

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Selective Cannabinoid Receptor-1 Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic Dermatitis Model.

“Many inflammatory mediators, including various cytokines (e.g. interleukins and tumor necrosis factor [TNF]), inflammatory proteases, and histamine are released following mast cell activation.

Endogenous cannabinoids such as palmitoylethanolamide (PEA) and N-arachidonoylethanolamine (anandamide or AEA), were found in peripheral tissues and have been proposed to possess autacoid activity, implying that cannabinoids may downregulate mast cell activation and local inflammation.

Our results indicate that CB1R agonists down-regulate mast cell activation and may be used for relieving inflammatory symptoms mediated by mast cell activation, such as atopic dermatitis, psoriasis, and contact dermatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/26848215

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

“WILD CANNABIS”: A REVIEW OF THE TRADITIONAL USE AND PHYTOCHEMISTRY OF LEONOTIS LEONURUS.

“Leonotis leonurus, locally commonly known as “wilde dagga” (=wild cannabis), is traditionally used as a decoction, both topically and orally, in the treatment of a wide variety of conditions such as haemorrhoids, eczema, skin rashes, boils, itching, muscular cramps, headache, epilepsy, chest infections, constipation, spider and snake bites. The dried leaves and flowers are also smoked to relieve epilepsy. The leaves and flowers are reported to produce a mild euphoric effect when smoked and have been said to have a similar, although less potent, psychoactive effect to cannabis.

The phytochemistry of particularly the non-volatile constituents of Leonotis leonurus has been comprehensively investigated due to interest generated as a result of the wide variety of biological effects reported for this plant. More than 50 compounds have been isolated and characterised. Leonotis leonurus contains mainly terpenoids, particularly labdane diterpenes, the major diterpene reported is marrubiin. Various other compounds have been reported by some authors to have been isolated from the plant, including, in the popular literature only, the mildly psychoactive alkaloid, leonurine. Leonurine has however, never been reported by any scientific analysis of the extracts of L. leonurus.

Despite the publication of various papers on L. leonurus, there is still, however, the need for definitive research and clarification of other compounds, including alkaloids and essential oils from L. leonurus, as well as from other plant parts, such as the roots which are extensively used in traditional medicine. The traditional use by smoking also requires further investigation as to how the chemistry and activity are affected by this form of administration. Research has proven the psychoactive effects of the crude extract of L. leonurus, but confirmation of the presence of psychoactive compounds, as well as isolation and characterisation, is still required. Deliberate adulteration of L. leonurus with synthetic cannabinoids has been reported recently, in an attempt to facilitate the marketing of these illegal substances, highlighting the necessity for refinement of appropriate quality control processes to ensure safety and quality. Much work is therefore still required on the aspect of quality control to ensure safety, quality and efficacy of the product supplied to patients, as this plant is widely used in South Africa as a traditional medicine. Commercially available plant sources provide a viable option for phytochemical research, particularly with regard to the appropriate validation of the plant material (taxonomy) in order to identify and delimit closely related species such as L. leonurus and L. nepetifolia which are very similar in habit.”

http://www.ncbi.nlm.nih.gov/pubmed/26292023

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Topical cannabinoid receptor 1 agonist attenuates the cutaneous inflammatory responses in oxazolone-induced atopic dermatitis model.

“This study was performed to investigate the effects of CBR agonists on skin inflammation, using acute and chronic inflammation animal models.

All of the results suggest that topical application of CB1R-specific agonist can be beneficial for alleviating the inflammatory symptoms in chronic skin diseases, including atopic dermatitis.”

http://www.ncbi.nlm.nih.gov/pubmed/26095080

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities

“The endocannabinoid system (ECS) and the skin. Recent studies have intriguingly suggested the existence of a functional ECS in the skin and implicated it in various biological processes. It seems that the main physiological function of the cutaneous ECS is to constitutively control the proper and well-balanced proliferation, differentiation and survival, as well as immune competence and/or tolerance, of skin cells. The disruption of this delicate balance might facilitate the development of multiple pathological conditions and diseases of the skin (e.g. acne, seborrhea, allergic dermatitis, itch and pain, psoriasis, hair growth disorders, systemic sclerosis and cancer).

Perspectives in the ECS-targeted management of skin diseases

… preclinical data encourage one to systematically explore whether ECS-modulating drugs can be exploited in the management of common skin disorders…

 … we review preliminary data and discuss the possible applications of ECS-targeted therapies…ECS-targeted approaches in skin diseases. Modulations of the fine-tuned tone of the cutaneous endocannabinoid system (ECS) could have therapeutic values in the management of a large variety of human skin diseases…

Conclusions and future directions in experimental and clinical research

… it is envisaged (this is also strongly supported by pilot studies) that the targeted manipulation of the ECS might be beneficial in a multitude of human skin diseases. However, to predict the real therapeutic potential and translate the exciting preclinical observations discussed earlier into clinical practice, numerous important questions should carefully be addressed. Nevertheless, targeting the cutaneous ECS for therapeutic gain remains an intriguing and provocative possibility warranting future studies.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757311/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

History of cannabis as a medicine: a review

 

” Cannabis as a medicine was used before the Christian era in Asia, mainly in India. The introduction of cannabis in the Western medicine occurred in the midst of the 19th century, reaching the climax in the last decade of that century, with the availability and usage of cannabis extracts or tinctures. In the first decades of the 20th century, the Western medical use of cannabis significantly decreased largely due to difficulties to obtain consistent results from batches of plant material of different potencies. The identification of the chemical structure of cannabis components and the possibility of obtaining its pure constituents were related to a significant increase in scientific interest in such plant, since 1965. This interest was renewed in the 1990’s with the description of cannabinoid receptors and the identification of an endogenous cannabinoid system in the brain. A new and more consistent cycle of the use of cannabis derivatives as medication begins, since treatment effectiveness and safety started to be scientifically proven.”

 

“Cannabis Sativa (cannabis) is among the earliest plants cultivated by man. The first evidence of the use of cannabis was found in China, where archeological and historical findings indicate that that plant was cultivated for fibers since 4.000 B.C.1 With the fibers obtained from the cannabis stems, the Chinese manufactured strings, ropes, textiles, and even paper. Textiles and paper made from cannabis were found in the tomb of Emperor Wu (104-87 B.C.), of the Han dynasty.

 

“The Chinese also used cannabis fruits as food. These fruits are small (3 to 5 mm), elliptic, smooth, with a hard shell, and contain one single seed. The first evidence of the use of these seeds was found during the Han dynasty (206 B.C. – 220 A.D.). In the beginning of the Christian Era, with the introduction of new cultures, cannabis was no longer an important food in China, although, until today, the seeds are still used for making kitchen oil in Nepal.

 

“The use of cannabis as a medicine by ancient Chinese was reported in the world’s oldest pharmacopoeia, the pen-ts’ao ching which was compiled in the first century of this Era, but based on oral traditions passed down from the time of Emperor Shen-Nung, who lived during the years 2.700 B.C. Indications for the use of cannabis included: rheumatic pain, intestinal constipation, disorders of the female reproductive system, malaria, and others.In the beginning of the Christian Era, Hua T’o, the founder of Chinese surgery (A.D. 110 – 207), used a compound of the plant, taken with wine, to anesthetize patients during surgical operations.

 

“The Chinese used mainly the seeds of cannabis for medical purposes; therefore, it may be assumed that they were referring to that part of the plant when describing its medicinal properties. Until today, cannabis seeds continue to be used as a laxative by Chinese physicians. It is acknowledged that the seeds are practically deficient in D9-tetrahydrocannabinol (D9-THC), which is considered the plant’s main active constituent, and is mainly composed of essential fatty acids and proteins. Today some of these fatty acids are considered as having therapeutic effects, such as the g-linoleic acid, whose topical use is recommended for eczema and psoriasis, and its oral use for atherosclerosis, osteoporosis, rheumatoid arthritis, and other inflammatory diseases. In China, the medical use of cannabis never reached the importance it did in India.”

Read More: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462006000200015&lng=en&nrm=iso&tlng=en

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis

“Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis…The endocannabinoid system and cannabimimetic compounds protect against effects of allergic inflammatory disorders in various species of mammals. Results of the present study contributed to knowledge of the endocannabinoid system and indicated this system may be a target for treatment of immune-mediated and inflammatory disorders such as allergic skin diseases in dogs.”

http://www.ncbi.nlm.nih.gov/pubmed/22738050

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous