Local Delivery of Cannabinoid-Loaded Microparticles Inhibits Tumor Growth in a Murine Xenograft Model of Glioblastoma Multiforme

“Treatment with cannabinoid-loaded microparticles activates apoptosis and inhibits tumor angiogensis. The aim of the present study was therefore to evaluate the antitumor efficacy of biodegradable polymeric microparticles allowing the controlled release of the phytocannabinoids THC and CBD. Our findings show that administration of cannabinoid-loaded microparticles reduces the growth of glioma xenografts supporting that this method of administration could be exploited for the design of cannabinoid-based anticancer treatments.

Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) – the two major ingredients of marijuana – have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1:1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

Δ9-Tetrahydrocannabinol (THC), the main active component of the hemp plant Cannabis sativa, exerts a wide variety of biological effects by mimicking endogenous substances – the endocannabinoids – that bind to and activate specific cannabinoid receptors. So far, two G protein–coupled cannabinoid-specific receptors have been cloned and characterized from mammalian tissues: CB1, abundantly expressed in the brain and at many peripheral sites, and CB2, expressed in the immune system and also present in some neuron subpopulations and glioma cells. One of the most active areas of research in the cannabinoid field is the study of the potential application of cannabinoids in the treatment of different pathologies. Among these therapeutic applications, cannabinoids are being investigated as anti-tumoral agents. Thus, cannabinoid administration curbs the growth of several types of tumor xenografts in rats and mice including gliomas. Based on this preclinical evidence, a pilot clinical trial has been recently run to investigate the anti-tumor action of THC on recurrent gliomas. The mechanism of THC anti-tumoral action relies on the ability of this compound to: (i) promote the apoptotic death of cancer cells (ii) to inhibit tumour angiogenesis and (iii) to reduce the migration of cancer cells.

Conclusions

Data presented in this manuscript show for the first time that in vivo administration of microencapsulated cannabinoids efficiently reduces tumor growth thus providing a proof of concept for the utilization of this formulation in cannabinoid-based anti-cancer therapies.”

Full text: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0054795

Cannabinoids for Cancer Treatment: Progress and Promise

Cancer Research: 68 (2)

“Cannabinoid refers to a group of chemicals naturally found in the marijuana plant Cannabis sativa L. and includes compounds that are either structurally or pharmacologically similar to Δ(9)-tetrahydrocannabinol or those that bind to the cannabinoid receptors. Although anticancer effects of cannabinoids were shown as early as 1975 in Lewis lung carcinoma, renewed interest was generated little after the discovery of the cannabinoid system and cloning of the specific cannabinoid receptors.

Cannabinoids are a class of pharmacologic compounds that offer potential applications as antitumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival. In particular, emerging evidence suggests that agonists of cannabinoid receptors expressed by tumor cells may offer a novel strategy to treat cancer. Here, we review recent work that raises interest in the development and exploration of potent, nontoxic, and nonhabit forming cannabinoids for cancer therapy.”

Full Text: http://cancerres.aacrjournals.org/content/68/2/339.long

Cannabinoids Halt Pancreatic Cancer, Breast Cancer Growth, Studies Say

“Compounds in cannabis inhibit cancer cell growth in human breast cancer cell lines and in pancreatic tumor cell lines, according to a pair of preclinical trials published in the July issue of the journal of the American Association for Cancer Research.

In one trial, investigators at Complutense University in Spain and the Institut National de la Sante et de la Recherche Medicale (INSERM) in France assessed the anti-cancer activity of cannabinoids in pancreatic cancer cell lines and in animals. Cannabinoid administration selectively increased apoptosis (programmed cell death) in pancreatic tumor cells while ignoring healthy cells, researchers found. In addition, “cannabinoid treatment inhibited the spreading of pancreatic tumor cells … and reduced the growth of tumor cells” in animals.

“These findings may contribute to … a new therapeutic approach for the treatment of pancreatic cancer,” authors concluded.

In the second trial, investigators at Spain’s Complutense University reported that THC administration “reduces human breast cancer cell proliferation [in vitro] by blocking the progression of the cell cycle and by inducing apoptosis.” Authors concluded that their findings “may set the bases for a cannabinoid therapy for the management of breast cancer.”

Previous preclinical data published in May in the Journal of Pharmacological and Experimental Therapeutics reported that non-psychoactive cannabinoids, particularly cannabidiol (CBD), dramatically halt the spread of breast cancer cells and recommended their use in cancer therapy.

Separate trials have also shown cannabinoids to reduce the size and halt the spread of glioma (brain tumor) cells in animals and humans in a dose dependent manner. Additional preclinical studies have demonstrated cannabinoids to inhibit cancer cell growth and selectively trigger malignant cell death in skin cancer cells, leukemic cells, lung cancer cells, and prostate carcinoma cells, among other cancerous cell lines.”

http://norml.org/news/2006/07/06/cannabinoids-halt-pancreatic-cancer-breast-cancer-growth-studies-say

US Investigators Praise Cannabinoids As Chemo Treatment

“Cannabinoids inhibit cancer cell proliferation and should be clinically tested as chemotherapeutic agents, according to a review published in the January issue of the journal Cancer Research.

Investigators at the University of Wisconsin School of Medicine and Public Health reported that the administration of cannabinoids halts the spread of a wide range of cancers, including brain cancer, prostate cancer, breast cancer, lung cancer, skin cancer, pancreatic cancer, and lymphoma.

Researchers suggested that cannabinoids may offer significant advantages over standard chemotherapy treatments because the compounds are both non-toxic and can uniquely target malignant cells while ignoring healthy ones.

“Cannabinoids … offer potential applications as anti-tumor drugs, based on the ability of some members of this class to limit inflammation, cell proliferation, and cell survival,” authors concluded. “[T]here is overwhelming evidence to suggest that cannabinoids can be explored as chemotherapeutic agents for the treatment of cancer.””

Read more: http://norml.org/news/2008/01/31/us-investigators-praise-cannabinoids-as-chemo-treatment

Baby Recovered From Brain Tumor With Daily Dose of Marijuana

“Anyone who has ever known and loved someone using chemotherapy knows just what a toxic cocktail those drugs truly are. So when faced with the idea that an 8-month-old baby could go through those horrific  side effects or try something else, namely marijuana, to treat a brain tumor, my money is on the “something else” every time.”

“This is exactly the question parents of an 8-month-old baby were faced with recently when they opted to treat their baby with cannabinoid oil (a form of marijuana) on the baby’s pacifier twice a day. Within two months the tumor had shrunk so dramatically that the baby’s doctor’s did not have to use chemo. Amazing, no?”

“The long term effects of marijuana on a baby are probably unknown, but the long term effects of chemotherapy may be just as harmful, if not even worse. At least cannabis can be grown safely and organically and given in as natural a state as possible.”

“Ordinarily I would frown on parents giving any kind of substance to a baby, but a baby with a brain tumor is another kind of story. In this case, the cannabis helped. Maybe this is the beginning of less invasive treatment methods with fewer side effects. Wouldn’t that be a miracle for ALL children?”

“Would you give your baby cannabinoid oil?”

Read more: http://thestir.cafemom.com/baby/147477/baby_recovered_from_brain_tumor?fb_action_ids=471912052845441&fb_action_types=og.recommends&fb_ref=post_top&fb_source=aggregation&fb_aggregation_id=288381481237582

Cannabinoid signaling in glioma cells

“Significant alterations of a balance in the cannabinoid system between the levels of endogenous ligands and their receptors occur during malignant transformation in various types of cancer, including gliomas. Cannabinoids exert anti-proliferative action in tumor cells. Induction of cell death by cannabinoid treatment…”

 http://www.ncbi.nlm.nih.gov/pubmed/22879071

Cannabinoids and gliomas.

Abstract

“Cannabinoids, the active components of Cannabis sativa L., act in the body by mimicking endogenous substances–the endocannabinoids–that activate specific cell surface receptors. Cannabinoids exert various palliative effects in cancer patients. In addition, cannabinoids inhibit the growth of different types of tumor cells, including glioma cells, in laboratory animals. They do so by modulating key cell signaling pathways, mostly the endoplasmic reticulum stress response, thereby inducing antitumoral actions such as the apoptotic death of tumor cells and the inhibition of tumor angiogenesis. Of interest, cannabinoids seem to be selective antitumoral compounds, as they kill glioma cells, but not their non-transformed astroglial counterparts. On the basis of these preclinical findings, a pilot clinical study of Delta(9)-tetrahydrocannabinol (THC) in patients with recurrent glioblastoma multiforme has been recently run. The good safety profile of THC, together with its possible growth-inhibiting action on tumor cells, justifies the setting up of future trials aimed at evaluating the potential antitumoral activity of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/17952650

Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells

Journal of Neuro-Oncology

“Normal tissue toxicity limits the efficacy of current treatment modalities for glioblastoma multiforme (GBM).

We evaluated the influence of cannabinoids on cell proliferation, death, and morphology of human GBM cell lines and in primary human glial cultures, the normal cells from which GBM tumors arise. The influence of a plant derived cannabinoid agonist, Delta(9)-tetrahydrocannabinol Delta(9)-THC), and a potent synthetic cannabinoid agonist, WIN 55,212-2, were compared using time lapse microscopy.

We discovered that Delta(9)-THC decreases cell proliferation and increases cell death of human GBM cells more rapidly than WIN 55,212-2. Delta(9)-THC was also more potent at inhibiting the proliferation of GBM cells compared to WIN 55,212-2. The effects of Delta(9)-THC and WIN 55,212-2 on the GBM cells were partially the result of cannabinoid receptor activation.

The same concentration of Delta(9)-THC that significantly inhibits proliferation and increases death of human GBM cells has no significant impact on human primary glial cultures. Evidence of selective efficacy with WIN 55,212-2 was also observed but the selectivity was less profound, and the synthetic agonist produced a greater disruption of normal cell morphology compared to Delta(9)-THC.”

https://www.ncbi.nlm.nih.gov/pubmed/16078104

https://link.springer.com/article/10.1007%2Fs11060-004-5950-2

Delta 9-tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells.

“The active components of Cannabis sativa L., Cannabinoids, traditionally used in the field of cancer for alleviation of pain, nausea, wasting and improvement of well-being have received renewed interest in recent years due to their diverse pharmacologic activities such as cell growth inhibition, anti-inflammatory activity and induction of tumor regression. Here we used several experimental approaches, which identified delta-9-tetrahydrocannabinol (Delta(9)-THC) as an essential mediator of cannabinoid antitumoral action.”

“CONCLUSIONS:

Delta(9)-THC is shown to significantly affect viability of GBM cells via a mechanism that appears to elicit G(1) arrest due to downregulation of E2F1 and Cyclin A. Hence, it is suggested that Delta(9)-THC and other cannabinoids be implemented in future clinical evaluation as a therapeutic modality for brain tumors.”

http://www.ncbi.nlm.nih.gov/pubmed/17934890

Antitumor Effects of Cannabidiol, a Nonpsychoactive Cannabinoid, on Human Glioma Cell Lines

“Marijuana and its derivatives have been used in medicine for many centuries, and currently there is a renewed interest in the study of the therapeutic effects of cannabinoids…”

“Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines…”

“…the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.”

“In conclusion, a cannabinoid-based therapeutic strategy for neural diseases devoid of undesired psychotropic side effects could find in CBD a valuable compound in cancer therapies along with the perspective of evaluating a synergistic effect with other cannabinoid molecules and/or with other chemotherapeutic agents as well as with radiotherapy. Whatever the precise mechanism underlying the CBD effects, the present results suggest a possible application of CBD as a promising, nonpsychoactive, antineoplastic agent.”

http://jpet.aspetjournals.org/content/308/3/838.full