Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS).

“Cannabis is widely used as a self-management strategy by patients with a wide range of symptoms and diseases including chronic noncancer pain.

The safety of cannabis use for medical purposes has not been systematically evaluated. We conducted a prospective cohort study to describe safety issues among subjects with chronic noncancer pain.

A standardized herbal cannabis product (12.5% THC) was dispensed to eligible subjects for a one-year period; controls were subjects with chronic pain from the same clinics who were not cannabis users.

The primary outcome consisted of serious adverse events (SAEs) and non-serious adverse events (AEs). Secondary safety outcomes included pulmonary and neurocognitive function and standard hematology, biochemistry, renal, liver and endocrine function.

Secondary efficacy parameters included pain and other symptoms, mood, and quality of life.

Two hundred and sixteen individuals with chronic pain were recruited to the cannabis group (141 current users and 58 ex-users) and 215 controls (chronic pain but no current cannabis use) from seven clinics across Canada. The median daily cannabis dose was 2.5g/d.

There was no difference in risk of SAEs between groups.

Medical cannabis users were at increased risk of non-serious AEs; most were mild to moderate. There were no differences in secondary safety assessments.

Quality-controlled herbal cannabis, when used by cannabis-experienced patients as part of a monitored treatment program over one year, appears to have a reasonable safety profile.

This study evaluated the safety of cannabis use by patients with chronic pain over one year. The study found that there was a higher rate of adverse events among cannabis users compared to controls but not for serious adverse events at an average dose of 2.5g herbal cannabis per day.”

http://www.ncbi.nlm.nih.gov/pubmed/26385201

http://www.thctotalhealthcare.com/category/pain-2/

The effects of endocannabinoid receptor agonist anandamide and antagonist rimonabant on opioid analgesia and tolerance in rats.

“The role of the cannabinoid (CB) system in the tolerance to analgesic effect of opioid remains obscure. The aim of the present study was to evaluate the effects of the endocannabinoid nonselective receptor agonist anandamide (AEA) and CB1 receptor antagonist rimonabant (SR141716) on morphine analgesia and tolerance in rats.

The findings suggested that AEA in combination with morphine produced a significant increase in expression of analgesic tolerance to morphine.

Conversely, cannabinoid receptor antagonist SR141716 attenuated morphine analgesic tolerance.

In addition, administration of AEA with morphine increased morphine analgesia.

In conclusion, we observed that the cannabinoid receptor agonist anandamide and CB1 receptor antagonist SR141716 plays a significant role in the opioid analgesia and tolerance.”

http://www.ncbi.nlm.nih.gov/pubmed/26374993

High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity.

“Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost.

Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation.

However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain.

This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.”

http://www.ncbi.nlm.nih.gov/pubmed/26342110

“The plant Cannabis sativa has been used as a medicine throughout the world for several thousand years, with reports of its use in treating painful symptoms appearing as early as 2600 BC. The principal psychoactive ingredient of Cannabis sativa, delta-9-tetrahydrocannabinol (Δ9-THC), was first identified in 1964, and subsequent studies to understand its mechanism of action led to the discovery of the endogenous cannabinoid (endocannabinoid) system… Because of the distribution of the endocannabinoid system throughout spinal and supraspinal regions, it is in a prime position to regulate neurophysiological activities such as affective and nociceptive processing… evidence suggests a prominent role for the endocannabinoid system in the interaction between depression and pain,” http://ijnp.oxfordjournals.org/content/early/2015/09/04/ijnp.pyv095.long

Medical Marijuana and Chronic Pain: a Review of Basic Science and Clinical Evidence.

“Cannabinoid compounds include phytocannabinoids, endocannabinoids, and synthetics.

The two primary phytocannabinoids are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), with CB1 receptors in the brain and peripheral tissue and CB2 receptors in the immune and hematopoietic systems.

The route of delivery of cannabis is important as the bioavailability and metabolism are very different for smoking versus oral/sublingual routes.

Gold standard clinical trials are limited; however, some studies have thus far shown evidence to support the use of cannabinoids for some cancer, neuropathic, spasticity, acute pain, and chronic pain conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/26325482

Neuropeptide VF Enhances Cannabinoid Agonist WIN55,212-2-Induced Antinociception in Mice.

“Cannabinoids produce analgesia in several pain models, but the undesirable side effects from high doses of cannabinoid drugs limit their clinic use.

Our recent results indicate that cannabinoid-induced antinociception was enhanced by neuropeptide VF (NPVF).

Here, we investigate whether low-dose cannabinoid agonists combined with NPVF can produce effective antinociception with limited side effects…

These data suggest that the cannabinoid agonist combined with NPVF produces effective antinociception-lacking tolerance via both cannabinoid receptor type 1 and neuropeptide FF receptors in the brain.”

http://www.ncbi.nlm.nih.gov/pubmed/26273748

[Clinical pharmacology of medical cannabinoids in chronic pain].

“In Switzerland, medical cannabinoids can be prescribed under compassionate use after special authorization in justified indications such as refractory pain. Evidence of efficacy in pain is limited and the clinical benefit seems to be modest. Their drug-drug interactions (DDI) profile is poorly documented. Cytochromes P450 (CYP) 2C9 and 3A4 are involved in the metabolism of tetrahydrocannabinol and cannabidiol, which implies possible DDI with CYP450 inhibitor and inducer, such as anticonvulsivants and HIV protease inhibitors, which may be prescribed in patients with neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/26267945

Microinjection of orexin-A into the rat locus coeruleus nucleus induces analgesia via cannabinoid type-1 receptors.

“Locus coeruleus (LC) nucleus is involved in noradrenergic descending pain modulation.

LC receives dense orexinergic projections from the lateral hypothalamus. Orexin-A and -B are hypothalamic peptides which modulate a variety of brain functions via orexin type-1 (OX1) and orexin type-2 (OX2) receptors.

Previous studies have shown that activation of OX1 receptors induces endocannabinoid synthesis and alters synaptic neurotransmission by retrograde signaling via affecting cannabinoid type-1 (CB1) receptors.

In the present study the interaction of orexin-A and endocannabinoids was examined at the LC level in a rat model of inflammatory pain…

This data show that, activation of OX1 receptors in the LC can induce analgesia and also the blockade of OX1 or CB1 receptors is associated with hyperalgesia during formalin test.

Our findings also suggest that CB1 receptors may modulate the analgesic effect of orexin-A.

These results outline a new mechanism by which orexin-A modulates the nociceptive processing in the LC nucleus.”

http://www.ncbi.nlm.nih.gov/pubmed/26254729

Therapeutic potential of cannabis-related drugs.

“In this review, I will consider the dual nature of Cannabis and cannabinoids.

The duality arises from the potential and actuality of cannabinoids in the laboratory and clinic and the ‘abuse’ of Cannabis outside the clinic.

The therapeutic areas currently best associated with exploitation of Cannabis-related medicines include pain, epilepsy, feeding disorders, multiple sclerosis and glaucoma.

As with every other medicinal drug of course, the ‘trick’ will be to maximise the benefit and minimise the cost.

After millennia of proximity and exploitation of the Cannabis plant, we are still playing catch up with an understanding of its potential influence for medicinal benefit.”

http://www.ncbi.nlm.nih.gov/pubmed/26216862

Cross-tolerance to cannabinoids in morphine-tolerant rhesus monkeys.

“Opioids remain the drugs of choice for treating moderate to severe pain, although adverse effects limit their use. Therapeutic utility might be improved by combining opioids with other drugs to enhance analgesic effects, but only if adverse effects are not similarly changed.

Cannabinoids have been shown to enhance the antinociceptive potency of opioids without increasing other effects; this study examined whether the effectiveness of cannabinoids is altered in morphine-dependent monkeys.

Tolerance developed to the antinociceptive effects of morphine and cross-tolerance developed to cannabinoids under conditions that produced modest physical dependence.

Compared with the doses examined in this study, much smaller doses of opioids have antinociceptive effects when given with cannabinoids; it is possible that tolerance will not develop to chronic treatment with opioid/cannabinoid mixtures.”

http://www.ncbi.nlm.nih.gov/pubmed/26202613

Endocannabinoid 2-arachidonylglycerol protects primary cultured neurons against LPS-induced impairments in rat caudate nucleus.

“Inflammation plays a pivotal role in the pathogenesis of many diseases in the central nervous system.

Caudate nucleus (CN), the largest nucleus in the brain, is also implicated in many neurological disorders.

2-Arachidonoylglycerol (2-AG), the most abundant endogenous cannabinoid and the true natural ligand for CB1 receptors, has been shown to exhibit neuroprotective effects through its anti-inflammatory action from proinflammatory stimuli in hippocampus.

In the present study, we discovered that 2-AG significantly protects CN neurons in culture against lipopolysaccharide (LPS)-induced inflammatory response.

Our study suggests the therapeutic potential of 2-AG for the treatment of some inflammation-induced neurological disorders and pain.”

http://www.ncbi.nlm.nih.gov/pubmed/24510751