Selective Cannabinoids for Chronic Neuropathic Pain: A Systematic Review and Meta-analysis.

Image result for Anesth Analg.

“There is a lack of consensus on the role of selective cannabinoids for the treatment of neuropathic pain (NP). Guidelines from national and international pain societies have provided contradictory recommendations. The primary objective of this systematic review and meta-analysis (SR-MA) was to determine the analgesic efficacy and safety of selective cannabinoids compared to conventional management or placebo for chronic NP.

METHODS:

We reviewed randomized controlled trials that compared selective cannabinoids (dronabinol, nabilone, nabiximols) with conventional treatments (eg, pharmacotherapy, physical therapy, or a combination of these) or placebo in patients with chronic NP because patients with NP may be on any of these therapies or none if all standard treatments have failed to provide analgesia and or if these treatments have been associated with adverse effects. MEDLINE, EMBASE, and other major databases up to March 11, 2016, were searched. Data on scores of numerical rating scale for NP and its subtypes, central and peripheral, were meta-analyzed. The certainty of evidence was classified using the Grade of Recommendations Assessment, Development, and Evaluation approach.

RESULTS:

Eleven randomized controlled trials including 1219 patients (614 in selective cannabinoid and 605 in comparator groups) were included in this SR-MA. There was variability in the studies in quality of reporting, etiology of NP, type and dose of selective cannabinoids. Patients who received selective cannabinoids reported a significant, but clinically small, reduction in mean numerical rating scale pain scores (0-10 scale) compared with comparator groups (-0.65 points; 95% confidence interval, -1.06 to -0.23 points; P = .002, I = 60%; Grade of Recommendations Assessment, Development, and Evaluation: weak recommendation and moderate-quality evidence). Use of selective cannabinoids was also associated with improvements in quality of life and sleep with no major adverse effects.

CONCLUSIONS:

Selective cannabinoids provide a small analgesic benefit in patients with chronic NP. There was a high degree of heterogeneity among publications included in this SR-MA. Well-designed, large, randomized studies are required to better evaluate specific dosage, duration of intervention, and the effect of this intervention on physical and psychologic function.”

The Standard Joint Unit.

Image result for Drug Alcohol Depend.

“Reliable data on cannabis quantities is required to improve assessment of cannabis consumption for epidemiological analysis and clinical assessment, consequently a Standard Joint Unit (SJU) based on quantity of 9-Tetrahydrocannabinol (9-THC) has been established.

METHODOLOGY:

Naturalistic study of a convenience sample recruited from February 2015-June 2016 in universities, leisure spaces, mental health services and cannabis clubs in Barcelona. Adults, reporting cannabis use in the last 60 days, without cognitive impairment or language barriers, answered a questionnaire on cannabis use and were asked to donate a joint to further determine their 9-THC and Cannabidiol (CBD) content.

RESULTS:

492 participants donated 315 valid joints. Donators were on average 29 years old, mostly men (77%), single (75%), with at least secondary studies (73%) and in active employment (63%). Marijuana joints (N=232) contained a median of 6.56mg of 9-THC (Interquartile range-IQR=10,22) and 0.02mg of CBD (IQR=0.02); hashish joints (N=83) a median of 7.94mg of 9-THC (IQR=10,61) and 3.24mg of CBD (IQR=3.21). Participants rolled 4 joints per gram of cannabis and paid 5€ per gram (median values).

CONCLUSION:

Consistent 9-THC-content in joints lead to a SJU of 7mg of 9-THC, the integer number closest to the median values shared by both cannabis types. Independently if marijuana or hashish, 1 SJU = 1 joint = 0.25 g of cannabis = 7 mg of 9-THC. For CBD, only hashish SJU contained relevant levels. Similarly to the Standard Drink Unit for alcohol, the SJU is useful for clinical, epidemiological and research purposes.”

https://www.ncbi.nlm.nih.gov/pubmed/28531767

http://www.drugandalcoholdependence.com/article/S0376-8716(17)30194-1/fulltext

Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities.

Cover image

“Cannabinoid pharmacology has been intensely studied because of cannabis’ pervasive medicinal and non-medicinal uses as well as for the therapeutic potential of cannabinoid-based drugs for the treatment of pain, anxiety, substance abuse, obesity, cancer and neurodegenerative disorders. The identification of allosteric modulators of the cannabinoid receptor 1 (CB1) has given a new direction to the development of cannabinoid-based therapeutics due to the many advantages offered by targeting allosteric site(s). Allosteric receptor modulators hold potential to develop subtype-specific and pathway-specific therapeutics. Here we briefly discuss the first-generation of allosteric modulators of CB1 receptor, their structure-activity relationships, signaling pathways and the allosteric binding site(s) on the CB1 receptor.”

https://www.ncbi.nlm.nih.gov/pubmed/28527758

http://www.sciencedirect.com/science/article/pii/S0028390817302307

A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice

Image result for nature medicine

“The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging.

The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated.

Here we show that a low dose of Δ9-tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density.

THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC.

Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.”

https://www.ncbi.nlm.nih.gov/pubmed/28481360

https://www.nature.com/nm/journal/vaop/ncurrent/full/nm.4311.html

“CAN MARIJUANA RESTORE MEMORY? NEW STUDY SHOWS CANNABIS CAN REVERSE COGNITIVE DECLINE IN MICE” http://www.newsweek.com/cannabis-marijuana-restores-memory-learning-cognitive-decline-596160

“A little cannabis every day might keep brain ageing at bay” https://www.newscientist.com/article/2130257-a-little-cannabis-every-day-might-keep-brain-ageing-at-bay/

“Low-dose cannabinoid THC restores memory and learning in old mice”  http://www.medicalnewstoday.com/articles/317342.php

“Daily Dose Of Cannabis May Protect And Heal The Brain From Effects Of Aging”  https://www.forbes.com/sites/janetwburns/2017/05/08/daily-dose-of-cannabis-may-protect-and-heal-the-brain-from-effects-of-aging/#70ef658f2e44

“Cannabis reverses aging processes in the brain”  https://medicalxpress.com/news/2017-05-cannabis-reverses-aging-brain.html

“Future dementia cure – Chemical in cannabis could REVERSE the ageing process” http://www.express.co.uk/life-style/health/801827/dementia-cure-cannabis-THC-chemical-memory

Delta-9-tetrahydrocannabinol shows antispastic and analgesic effects in a single case double-blind trial.

Image result for Eur Arch Psychiatry Clin Neurosci.

“A double-blind study was performed comparing 5 mg delta-9-tetrahydrocannabinol (THC) p.o., 50 mg codeine p.o., and placebo in a patient with spasticity and pain due to spinal cord injury. The three conditions were applied 18 times each in a randomized and balanced order. Delta-9-THC and codeine both had an analgesic effect in comparison with placebo. Only delta-9-THC showed a significant beneficial effect on spasticity. In the dosage of THC used no altered consciousness occurred.”

Δ9-Tetrahydrocannabinol (THC) and AM 404 protect against cerebral ischaemia in gerbils through a mechanism involving cannabinoid and opioid receptors

Logo of brjpharm

“It has been suggested that the endocannabinoid system elicits neuroprotection against excitotoxic brain damage.

In the present study the therapeutic potential of AM 404 on ischaemia-induced neuronal injury was investigated in vivo and compared with that of the classical cannabinoid receptor type 1 (CB1) agonist, Δ9-tetraydrocannabinol (THC), using a model of transient global cerebral ischaemia in the gerbil.

Our findings demonstrate that AM 404 and THC reduce neuronal damage caused by bilateral carotid occlusion in gerbils and that this protection is mediated through an interaction with CB1 and opioid receptors.

Endocannabinoids might form the basis for the development of new neuroprotective drugs useful for the treatment of stroke and other neurodegenerative pathologies.

There is some evidence from experiments with mice that increasing anandamide or 2-arachidonoyl glycerol content may lead to neuroprotection.

Collectively, our data demonstrate that AM 404 and THC protect against neuronal ischaemia-induced injury through a mechanism involving cannabinoid and opioid receptors but not vanilloid receptors.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2189998/

Combined cannabinoid therapy via an oromucosal spray.

“Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects.”  https://www.ncbi.nlm.nih.gov/pubmed/16969427

“Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome.”  https://journals.prous.com/journals/servlet/xmlxsl/pk_journals.xml_summaryn_pr?p_JournalId=4&p_RefId=1021517

“Sativex(®) (nabiximols, USAN name) oromucosal spray contains the two main active constituents of Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 molecular ratio, and acts as an endocannabinoid system modulator.”  https://www.ncbi.nlm.nih.gov/pubmed/21449855

“Abuse potential and psychoactive effects of δ-9-tetrahydrocannabinol and cannabidiol oromucosal spray (Sativex), a new cannabinoid medicine. Evidence to date suggests that abuse or dependence on Sativex is likely to occur in only a very small proportion of recipients.” https://www.ncbi.nlm.nih.gov/pubmed/21542664

The Role of Cannabinoids in the Treatment of Cancer in Pediatric Patients.

“Cannabis has been used in folk medicine to alleviate pain, depression, amenorrhea, inflammation and numerous other medical conditions. In cancer patients specifically, cannabinoids are well known to exert palliative effects; their best-established use is the inhibition of chemotherapy-induced nausea and vomiting, but they are applied also to alleviate pain, stimulate appetite, and attenuate wasting. More recently, cannabinoids have gained special attention for their role in cancer cell proliferation and death.

Anti-cancer efficacy of cannabinoids:

The ability of cannabinoids to reduce tumor growth was reported for the first time by Munson et al. in 1975. They showed by in vitro and in vivo experiments that several phytocannabinoids, including THC, decreased Lewis lung adenocarcinoma proliferation in a dose-dependent manner. Nevertheless, it was not until the 2000s that the interest in these compounds as anti-cancer agents was renewed, predominantly due to the work of Guzman in gliomas, and the demonstration of cannabinoids’ anti-cancer effects on various types of tumors. The anti-tumorigenic effect of the endo- and phytocannabinoids was demonstrated in several in vitro and in vivo models of a wide variety of adult tumors including glioma, prostate, breast, leukemia, lymphoma, pancreas, melanoma, thyroid, colorectal and hepatocellular carcinoma tumors.

Given our positive results, we suggest that non-THC cannabinoids such as CBD might provide a basis for the development of novel therapeutic strategies without the typical psychotropic effects of THC that limit its use in pediatric patients.

Overall, the cannabinoids, and specifically the non-psychoactive CBD, may show future promise in the treatment of cancer”

https://www.ima.org.il/FilesUpload/IMAJ/0/228/114216.pdf

https://www.ima.org.il/imaj/ViewArticle.aspx?aId=4044

https://www.ncbi.nlm.nih.gov/pubmed/28457057

Cannabis Use, Medication Management and Adherence Among Persons Living with HIV.

Image result for AIDS Behav.

“Cannabis is used to relieve nausea, trigger weight gain, and reduce pain among adults living with HIV; however, the relationship between its use and medication adherence and management is unclear. Participants (N = 107) were from an ongoing cohort study of community-dwelling HIV+ adults, stratified by cannabis (CB) use: HIV+/CB+ (n = 41) and HIV+/CB- (n = 66). CB+ participants either tested positive in a urine toxicology screen for THC or had a self-reported history of regular and recent use. HIV-status was provided by physician results and/or biomarker assessment. Adherence was measured via the Morisky scale and medication management was assessed via the Medication Management Test-Revised. After adjusting for gender, we found no association between cannabis use group and adherence nor medication management. The amount of cannabis used was also not associated with measures of adherence and management. Preliminary findings suggest that cannabis use may not adversely influence medication adherence/management among adults living with HIV.”

Significant Tic Reduction in An Otherwise Treatment-Resistant Patient with Gilles de la Tourette Syndrome Following Treatment with Nabiximols.

brainsci-logo

“Early anecdotal reports and preliminary studies suggested that cannabinoid-based medicines such as delta-9-tetrahydrocannabinol (THC) are effective in the treatment of Gilles de la Tourette syndrome (TS).

We report a single case study of a patient with otherwise treatment-resistant TS successfully treated with nabiximols.

Our results provide further evidence that treatment with nabiximols may be effective in the treatment of patients with TS.

Given the positive response exhibited by the patient highlighted in this report, further investigation of the effects of nabiximols is proposed on a larger group of patients in a clinical trial setting.”