“While activation of cannabinoid (CB2) receptors has been shown to be neuroprotective, no studies have examined whether this neuroprotection is directed at cerebral arterioles and no studies have examined whether activation of CB2 receptors can rescue cerebrovascular dysfunction during a chronic disease state such as type 1 diabetes (T1D).
Our goal was to test the hypothesis that administration of a CB2 agonist (JWH-133) would improve impaired endothelial (eNOS)- and neuronal (nNOS)- dependent dilation of cerebral arterioles during T1D.
In vivo diameter of cerebral arterioles in nondiabetic and T1D rats was measured in response to an eNOS-dependent agonist (adenosine 5′-diphosphate; ADP), an nNOS-dependent agonist (N-methyl-D-aspartate; NMDA), and an NOS-independent agonist (nitroglycerin) before and 1 hour following JWH-133 (1 mg/kg IP). Dilation of cerebral arterioles to ADP and NMDA was greater in nondiabetic than in T1D rats.
Treatment with JWH-133 increased responses of cerebral arterioles to ADP and NMDA in both nondiabetic and T1D rats. Responses of cerebral arterioles to nitroglycerin were similar between nondiabetic and T1D rats, and JWH-133 did not influence responses to nitroglycerin in either group. The restoration in responses to the agonists by JWH-133 could be inhibited by treatment with a specific inhibitor of CB2 receptors (AM-630; 3 mg/kg IP).
Thus, activation of CB2 receptors can potentiate reactivity of cerebral arterioles during physiologic and pathophysiologic states. We speculate that treatment with CB2 receptor agonists may have potential therapeutic benefits for the treatment of cerebral vascular diseases via a mechanism that can increase cerebral blood flow.”
https://pubmed.ncbi.nlm.nih.gov/32979391/
“Activation of CB2 receptors improves cerebral vascular function. Activation of CB2 receptors improves responses in type 1 diabetes. We speculate that treatment with CB2 receptor agonists may have potential therapeutic benefits for the treatment of cerebral vascular disease that can contribute to the pathogenesis of stroke.”
https://www.sciencedirect.com/science/article/pii/S0026286220301370?via%3Dihub
“Cannabis exposure is becoming more common in older age but little is known about how it is associated with brain health in this population.
“To determine if cannabis may be used as an alternative or adjunct treatment for intermittent and chronic prescription opioid users.
“The prevalence of mild traumatic brain injury is highest amongst the adolescent population and can lead to complications including neuroinflammation and excitotoxicity.
“Δ9 -Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells.
“People living with HIV (PLWH) report higher rates of cannabis use than the general population, a trend likely to continue in light of recent policy changes and the reported therapeutic benefits of cannabis for PLWH. Therefore, it is important to better understand cannabis-associated effects on neurocognition, especially as PLWH are at heightened risk for neurocognitive impairment.
“Natural cannabinoids may have beneficial effects on various tissues and functions including a positive influence on the immune system and the inflammatory process.
