Aplicaciones terapéuticas por acción de los cannabinoides.

“The interest on cannabinoids became evident between the 1940 and 1950 decades. Although the active substance of the plant was not known, a series of compounds with cannabinomimetic activity were synthesized, which were investigated in animals and clinically. The most widely tested was Δ6a, 10a-THC hexyl. Δ6a, 10a-THC dimethylheptyl (DMHP) antiepileptic effects were studied in several children, with positive results being obtained in some cases. DMHP differs from sinhexyl in that its side chain is DMHP instead of n-hexyl. The first cannabinoid isolated from Cannabis sativa was cannabinol, although its structure was correctly characterized several years later. Cannabidiol was isolated some years later and was subsequently characterized by Mechoulam and Shvo. In 2013, the National Academy of Medicine and the Faculty of Medicine of the National Autonomous University of Mexico, through the Seminar of Studies on Entirety, decided to carry out a systematic review on a subject that is both complex and controversial: the relationship between marijuana and health. In recent years, studies have been conducted with cannabis in several diseases: controlled clinical trials on spasticity in multiple sclerosis and spinal cord injury, chronic, essentially neuropathic, pain, movement disorders (Gilles de Latourette, dystonia, levodopa dyskinesia), asthma and glaucoma, as well as non-controlled clinical trials on Alzheimer’s disease, neuroprotection, intractable hiccups, epilepsy, alcohol and opioid dependence and inflammatory processes.”

https://www.ncbi.nlm.nih.gov/pubmed/31219471

http://gacetamedicademexico.com/frame_esp.php?id=310

The Impact of Cannabis Consumption on Mortality, Morbidity, and Cost in Acute Pancreatitis Patients in the United States: A 10-Year Analysis of the National Inpatient Sample.

Image result for Pancreas journal

“The aim of this study was to identify the prevalence of cannabis use among all patients admitted with acute pancreatitis (AP) in the United States and to investigate the impact of cannabis use on AP mortality, morbidity, and cost of care.

RESULTS:

More than 2.8 million patients with AP patients were analyzed. Cannabis-exposed (CE) patients’ prevalence was 0.3%. Patients exposed to cannabis were younger and mostly males compared with non-cannabis-exposed patients. After adjusting for these factors, the CE group had significantly lower inpatient mortality compared with the noncannabis group (odds ratio, 0.17; 95% confidence interval, 0.06-0.53). Cannabis-exposed patients also had decreased length of stay, inflation-adjusted charges, acute kidney injury, ileus, shock, acute respiratory distress syndrome, and parenteral nutrition requirement.

CONCLUSIONS:

Cannabis-exposed hospitalized patients with AP had lower age-adjusted, mortality, morbidity, and hospitalization-cost than non-cannabis-exposed patients.”

The origins of cannabis smoking: Chemical residue evidence from the first millennium BCE in the Pamirs.

 Science Advances: 5 (6)“Cannabis is one of the oldest cultivated plants in East Asia, grown for grain and fiber as well as for recreational, medical, and ritual purposes. It is one of the most widely used psychoactive drugs in the world today, but little is known about its early psychoactive use or when plants under cultivation evolved the phenotypical trait of increased specialized compound production. The archaeological evidence for ritualized consumption of cannabis is limited and contentious. Here, we present some of the earliest directly dated and scientifically verified evidence for ritual cannabis smoking. This phytochemical analysis indicates that cannabis plants were burned in wooden braziers during mortuary ceremonies at the Jirzankal Cemetery (ca. 500 BCE) in the eastern Pamirs region. This suggests cannabis was smoked as part of ritual and/or religious activities in western China by at least 2500 years ago and that the cannabis plants produced high levels of psychoactive compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/31206023

https://advances.sciencemag.org/content/5/6/eaaw1391

“Earliest evidence for cannabis smoking discovered in ancient tombs”  https://www.nationalgeographic.com/culture/2019/06/earliest-evidence-cannabis-marijuana-smoking-china-tombs/

“The First Evidence of Smoking Pot Was Found in a 2,500-Year-Old Pot”  https://www.smithsonianmag.com/smart-news/2500-year-old-chinese-cemetery-offers-earliest-physical-evidence-cannabis-smoking-180972410/

“Earliest Evidence of People “Smoking” Weed Found in 2,500-Year-Old Chinese Pots”  https://www.sciencealert.com/ancient-pots-from-china-reveal-humans-smoking-cannabis-2-500-years-ago

“Oldest evidence of marijuana use discovered in 2500-year-old cemetery in peaks of western China” https://www.sciencemag.org/news/2019/06/oldest-evidence-marijuana-use-discovered-2500-year-old-cemetery-peaks-western-china

“Cannabis use for medicinal purposes dates back at least 3,000 years.”  https://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_7

“Cannabis has been used for medicinal purposes for thousands of years.” https://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq

“The use of Cannabis for medicinal purposes dates back to ancient times.” http://www.cancer.gov/about-cancer/treatment/cam/patient/cannabis-pdq#section/all

Cannabis treatment in hospitalized patients using the SYQE inhaler: Results of a pilot open-label study.

Related image

“The objectives were to evaluate the, usability, feasibility of use, satisfaction, and safety of the Syqe Inhaler Exo (Syqe Inhaler), a metered dose, Pharmacokinetics-validated, cannabis inhaler device in a cohort of hospitalized patients that were using medical cannabis under license as a part of their ongoing medical treatment.

Before and after inhaling from the Syqe Inhaler, participants were asked to fill a questionnaire regarding pain reduction on a visual analog scale from 0 to 10 and, if relevant, reduction in chemotherapy-induced nausea and vomiting and/or spasticity. A patient satisfaction questionnaire and a usability questionnaire were filled in following the last use. Prescribed treatment included 4 daily doses of 500 μg tetrahydrocannabinol each delivered from 16 mg cannabis flos per inhalation plus up to an additional four SOS (distress code for more doses of cannabis) doses.

Result: Daily cannabis dose consumed during hospitalization with the Syqe Inhaler was 51 mg (20-96) versus 1,000 mg (660-3,300) consumed prehospitalization. Patients were easily trained and continued to use Syqe Inhaler for the duration of their hospitalization (5 [3-7] days).

Pain intensity 30-60 minutes following inhalations was reported to be significantly lower than preinhalation 4 [1-5] versus 7 [2-9]). Participants ranked their satisfaction with Syqe Inhaler as 6 (5-7). Three participants reported mild cough, which resolved spontaneously.

Significance of results: Cannabis inhalation by combustion is not feasible for hospitalized patients. The use of Syqe Inhaler during hospitalization yielded high levels of patients and staff satisfaction with no complications.”

https://www.ncbi.nlm.nih.gov/pubmed/31196236

https://www.cambridge.org/core/journals/palliative-and-supportive-care/article/cannabis-treatment-in-hospitalized-patients-using-the-syqe-inhaler-results-of-a-pilot-openlabel-study/0C1940413E704A7EADCB949F5F49603A

[Cannabis for medical purposes and its prescription].

“Since 10 March 2017, physicians have been allowed to prescribe cannabis to patients with serious illnesses and in the absence of alternative therapies. Patients can obtain it as dried flowers or extracts in standardised pharmaceutical quality by prescription (narcotic prescription, except for cannabidiol) in pharmacies. When prescribing, physicians have to take a few things into account. The first step is to decide which therapeutic effects are to be achieved and which is the most suitable cannabis product. Cannabis for medical use must meet the requirements for pharmaceutical quality. An identity check must be carried out in the pharmacy on the basis of the monographs of the German Pharmacopoeia (DAB) or the German Pharmaceutical Codex/New Prescription Form (DAC/NRF). For the production of prescription drugs, e.g. capsules, drops or inhalates, there are also corresponding monographs for the preparation of prescription drugs. These standardised, quality-assured prescription formulas should be given preference in the case of a medical prescription. When prescribing an oral or inhalative form of application, it should be noted that the onset and duration of action are very different. Also, due to the complex pharmacology of cannabinoids, interindividual genetic differences in the metabolisation of ∆9-tetrahydrocannabinol (THC), the individual structure and function of the cannabinoid receptors, as well as differences in receptor density and distribution, the dosage and frequency of application must be individually determined. Last but not least, the dosage also depends on the type of disease and individual susceptibility to side effects. When prescribed for the first time, a creeping dosage with a very low initial dose is recommended.”

https://www.ncbi.nlm.nih.gov/pubmed/31187182

https://link.springer.com/article/10.1007%2Fs00103-019-02970-6

Availability of legalized cannabis reduces demand for illegal cannabis among Canadian cannabis users: evidence from a behavioural economic substitution paradigm.

“In the context of cannabis legalization, an important question among clinicians, policymakers, and the public is whether availability of legal cannabis will significantly reduce consumption (demand) of illegal cannabis.

Using paradigms from behavioural economics, we tested the prediction that legal cannabis would be an asymmetrical substitute for illegal cannabis, with legal cannabis operating as a superior commodity based on its regulated status. In a sample of 289 adult cannabis users in Ontario, we found evidence of substitutability for both legal and illegal cannabis, but significantly lower substitutability of illegal for legal cannabis, a pattern that was also present for price elasticity (α) and Pmax.

Thus, the data indicated asymmetric substitution such that the availability of legal cannabis substantially decreased demand for illegal cannabis, but a significantly smaller effect in reverse.

These results suggest that the introduction of legal cannabis into the market may disrupt and reduce illegal purchases, contributing to the reduction of the potential harms associated with the illegal market.

However, in revealing price windows in which legal cannabis is preferred over the contraband alternative, these data also have significant implications for pricing policies.”

https://www.ncbi.nlm.nih.gov/pubmed/30523535

https://link.springer.com/article/10.17269%2Fs41997-018-0160-4

What is the evidence for cannabis use in otolaryngology?: A narrative review.

American Journal of Otolaryngology

“A small number of studies exist that suggest cannabis may be a useful therapy for Otolaryngological patients suffering from blepharospasm, the effects of radiation, and the psychological sequelae of receiving a cancer diagnosis.

Further research is required to determine the potential therapeutic roles and adverse effects of cannabis on conditions related to Otolaryngology.”

https://www.ncbi.nlm.nih.gov/pubmed/31174932

https://www.sciencedirect.com/science/article/abs/pii/S0196070919304685?via%3Dihub

“Otolaryngology is a medical specialty which is focused on the ears, nose, and throat.”  http://www.entcolumbia.org/about-us/what-otolaryngology

Novel CB1-ligands maintain homeostasis of the endocannabinoid-system in ω3- and ω6-long chain-PUFA deficiency.

The Journal of Lipid Research“Mammalian ω3- and ω6-PUFAs are synthesized from essential fatty acids (EFAs) or supplied by the diet. PUFAs are constitutive elements of membrane-architecture and precursors of lipid signaling molecules. EFAs and long chain PUFAs are precursors in the synthesis of endocannabinoid-ligands of the Gi/o-protein coupled cannabinoid receptors 1 and 2 in the endocannabinoid-system, which critically regulates energy homeostasis, as metabolic signaling system in hypothalamic neuronal circuits, and behavioral parameters. We utilized the auxotrophic fatty acid desaturase 2 deficient (fads2-/-) mouse, deficient in long chain PUFA-synthesis, to follow the age dependent dynamics of the PUFA pattern in the CNS-phospholipidome in unbiased dietary studies of three cohorts on sustained long chain PUFA-free, ω6-arachidonic and ω3-docosahexaenoic acid supplemented diets and their impact on the precursor pool of CB1 ligands. We discovered the transformation of eicosa-all cis-5,11,14-trienoic acid, uncommon in mammalian lipidomes, into two novel endocannabinoids, 20:35,11,14-ethanolamide and 2-20:35,11,14-glycerol, acting as ligands of CB1 in HEK293-cells. Labeling experiments excluded a Δ8-desaturase activity and proved the position-specificity of FADS2. The fads2 -/- mutant might serve as an unbiased model in vivo in the development of novel CB1-agonists and antagonists.”

https://www.ncbi.nlm.nih.gov/pubmed/31167809

http://www.jlr.org/content/early/2019/06/05/jlr.M094664

l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway.

Pharmacology Research & Perspectives banner

“The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury.”

https://www.ncbi.nlm.nih.gov/pubmed/31149342

https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1002/prp2.487

Biosynthesis of cannflavins A and B from Cannabis sativa L.

Phytochemistry

“In addition to the psychoactive constituents that are typically associated with Cannabis sativa L., there exist numerous other specialized metabolites in this plant that are believed to contribute to its medicinal versatility. This study focused on two such compounds, known as cannflavin A and cannflavin B. These prenylated flavonoids specifically accumulate in C. sativa and are known to exhibit potent anti-inflammatory activity in various animal cell models. However, almost nothing is known about their biosynthesis. Using a combination of phylogenomic and biochemical approaches, an aromatic prenyltransferase from C. sativa (CsPT3) was identified that catalyzes the regiospecific addition of either geranyl diphosphate (GPP) or dimethylallyl diphosphate (DMAPP) to the methylated flavone, chrysoeriol, to produce cannflavins A and B, respectively. Further evidence is presented for an O-methyltransferase (CsOMT21) encoded within the C. sativa genome that specifically converts the widespread plant flavone known as luteolin to chrysoeriol, both of which accumulate in C. sativa. These results therefore imply the following reaction sequence for cannflavins A and B biosynthesis: luteolin ► chrysoeriol ► cannflavin A and cannflavin B. Taken together, the identification of these two unique enzymes represent a branch point from the general flavonoid pathway in C. sativa and offer a tractable route towards metabolic engineering strategies that are designed to produce these two medicinally relevant Cannabis compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/31151063

https://www.sciencedirect.com/science/article/pii/S0031942218303819?via%3Dihub

“U of G Researchers First to Unlock Access to Pain Relief Potential of Cannabis”  https://news.uoguelph.ca/2019/07/u-of-g%E2%80%AFresearchers-first-to-unlock-access-to-pain%E2%80%AFrelief%E2%80%AFpotential-of-cannabis%E2%80%AF/

“Scientists unlock the secrets of marijuana’s pain-relief potential, study says” HTTPS://WWW.NEWSOBSERVER.COM/NEWS/NATION-WORLD/NATIONAL/ARTICLE233045517.HTML