Effect of myrcene on nociception in mice.

“Myrcene, a monoterpene… The results suggest that myrcene is capable of inducing antinociception in mice, probably mediated by alpha 2-adrenoceptor stimulated release of endogenous opioids.” http://www.ncbi.nlm.nih.gov/pubmed/1983154

“Myrcene as a natural base chemical in sustainable chemistry: a critical review.”  http://www.ncbi.nlm.nih.gov/pubmed/20013989

“Single dose toxicity study of beta-myrcene, a natural analgesic substance.”  http://www.ncbi.nlm.nih.gov/pubmed/2101331

“Myrcene mimics the peripheral analgesic activity of lemongrass tea.  Terpenes such as myrcenemay constitute a lead for the development of new peripheral analgesics with a profile of action different from that of the aspirin-like drugs.”  http://www.ncbi.nlm.nih.gov/pubmed/1753786

“Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol. The top five major compounds in Bedrocan extracts were Delta(9)-THC, cannabigerol (CBG), terpinolene, myrcene, and cis-ocimene in Bedrobinol Delta(9)-THC, myrcene, CBG, cannabichromene (CBC), and camphene in Bediol cannabidiol (CBD), Delta(9)-THC, myrcene, CBC, and CBG. The major components in Bedrocan smoke were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene. The major components in Bedrocan vapor were Delta(9)-THC, terpinolene, myrcene, CBG, cis-ocimene and CBD in Bedrobinol Delta(9)-THC, myrcene and CBD in Bediol CBD, Delta(9)-THC, myrcene, CBC and terpinolene. ” http://www.ncbi.nlm.nih.gov/pubmed/20118579

Guaiol–a naturally occurring insecticidal sesquiterpene.

“The dichloromethane fraction of Ferula ferulaeoides was analyzed by GC and GC-MS, and thirty-four compounds were identified. The main component in the fraction, guaiol (37.0%) was separated by chromatographic methods and identified from spectroscopic data, including 1H and 13C NMR, and X-ray crystallographic diffraction. Guaiol showed significant inhibition of aphids at a concentration of 70 mg/L. It also showed good contact activities against the 4th instar larvae of Mythimna separate and 3rd instar larvae of Plutella xylostella, with LD50 values of 0.07 and 8.9 mg/larva, as well as fumigation activity against the 4th instar larvae ofM. separata and adult Musca domestica, with LC50 values of 3.5 microL/L and 16.9 microL/L, respectively.” http://www.ncbi.nlm.nih.gov/pubmed/24354171

Anticancer and antioxidant properties of terpinolene in rat brain cells.

“Terpinolene (TPO) is a natural monoterpene present in essential oils of many aromatic plant species.

Our findings clearly demonstrate that TPO is a potent antiproliferative agent for brain tumour cells and may have potential as an anticancer agent, which needs to be further studied.” http://www.ncbi.nlm.nih.gov/pubmed/24084350

“Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol. The major components in Bedrocan smoke were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene.”  http://www.ncbi.nlm.nih.gov/pubmed/20118579

“The sedative effect of inhaled terpinolene in mice and its structure-activity relationships.” http://www.ncbi.nlm.nih.gov/pubmed/23339024

 “Anticancer and antioxidant properties of terpinolene in rat brain cells.”  http://www.ncbi.nlm.nih.gov/pubmed/24084350

Cannabinoid receptor 1 binding activity and quantitative analysis of Cannabis sativa L. smoke and vapor.

cpb

“Cannabis sativa L. (cannabis) extracts, vapor produced by the Volcano vaporizer and smoke made from burning cannabis joints were analyzed by GC-flame ionization detecter (FID), GC-MS and HPLC. Three different medicinal cannabis varieties were investigated Bedrocan, Bedrobinol and Bediol.

Cannabinoids plus other components such as terpenoids and pyrolytic by-products were identified and quantified in all samples. Cannabis vapor and smoke was tested for cannabinoid receptor 1 (CB1) binding activity and compared to pure Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

The top five major compounds in Bedrocan extracts were Delta(9)-THC, cannabigerol (CBG), terpinolene, myrcene, and cis-ocimene in Bedrobinol Delta(9)-THC, myrcene, CBG, cannabichromene (CBC), and camphene in Bediol cannabidiol (CBD), Delta(9)-THC, myrcene, CBC, and CBG.

The major components in Bedrocan vapor (>1.0 mg/g) were Delta(9)-THC, terpinolene, myrcene, CBG, cis-ocimene and CBD in Bedrobinol Delta(9)-THC, myrcene and CBD in Bediol CBD, Delta(9)-THC, myrcene, CBC and terpinolene.

The major components in Bedrocan smoke (>1.0 mg/g) were Delta(9)-THC, cannabinol (CBN), terpinolene, CBG, myrcene and cis-ocimene in Bedrobinol Delta(9)-THC, CBN and myrcene in Bediol CBD, Delta(9)-THC, CBN, myrcene, CBC and terpinolene.

There was no statistically significant difference between CB1 binding of pure Delta(9)-THC compared to cannabis smoke and vapor at an equivalent concentration of Delta(9)-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/20118579

Inhibition of the cataleptic effect of tetrahydrocannabinol by other constituents of Cannabis sativa L.

“Tetrahydrocannabinol (THC) induced catalepsy in mice, whereas a cannabis oil (6.68% w/w THC), four cannabinoids and a synthetic mixture did not. Cannabinol (CBN) and olivetol inhibited THC-induced catalepsy in the mornings and the evenings, but cannabidiol (CBD) exhibited this effect only in the evenings. A combination of CBN and CBD inhibited THC-induced catalepsy equal to that of CBN alone in the mornings, but this inhibition was greater than that produced by CBN alone in the evenings.”  http://www.ncbi.nlm.nih.gov/pubmed/2897447

Cannflavin A and B, prenylated flavones from Cannabis sativa L.

“Two novel prenylated flavones, termed Cannflavin A and B, were isolated from the cannabinoid free ethanolic extract of Cannabis sativa L. Both compounds inhibited prostaglandin E2 production by human rheumatoid synovial cells in culture.”

http://www.ncbi.nlm.nih.gov/pubmed/3754224

Isolation from Cannabis sativa L. of cannflavin–a novel inhibitor of prostaglandin production.

“The isolation from Cannabis sativa L. of an inhibitor of prostaglandin (PG) E2 production by cultured rheumatoid synovial cells is described. This agent, for which the name Cannflavin has been coined, is distinct from cannabinoids on the basis of isolation procedure, preliminary structural analysis and biological properties. The activity of Cannflavin has been compared with several established anti-inflammatory drugs and the major cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/3859295

Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase

Cover image

“Hemp seeds are of great nutritional value, containing all essential amino acids and fatty acids in sufficient amount and ratio to meet the dietary human demand.

Hemp seeds do not contain cannabinoids, and because of their high contents of ω-3 fatty acids, are enjoying a growing popularity as a super-food to beneficially affect chronic inflammation.

Seeds also lack the typical phenolics of hemp leaves and inflorescences, but we found that sprouting, while not triggering the production of cannabinoids, could nevertheless induce the production of the anti-inflammatory prenylflavonoids cannflavins A and B.

This effect was especially marked in Ermo, a cannabinoid-free variety of Cannabis sativa L. Microsomal prostaglandin E2 synthase (mPGES-1) and 5-lipoxygenase (5-LO) were identified as the molecular targets of cannflavins A and B, solving an almost three-decade old uncertainty on the mechanism of their the anti-inflammatory activity.

No change on the fatty acid profile was observed during sprouting, and the presence of lipophilic flavonoids combines with the high concentration of ω-3 essential acids to qualify sprouts from Ermo as a novel anti-inflammatory hemp food product worth considering for mass production and commercial development.”

http://www.sciencedirect.com/science/article/pii/S2213434414000176

Medical Marijuana Laws Reduce Prescription Medication Use In Medicare Part D.

Health Affairs

“Legalization of medical marijuana has been one of the most controversial areas of state policy change over the past twenty years. However, little is known about whether medical marijuana is being used clinically to any significant degree. Using data on all prescriptions filled by Medicare Part D enrollees from 2010 to 2013, we found that the use of prescription drugs for which marijuana could serve as a clinical alternative fell significantly, once a medical marijuana law was implemented. National overall reductions in Medicare program and enrollee spending when states implemented medical marijuana laws were estimated to be $165.2 million per year in 2013. The availability of medical marijuana has a significant effect on prescribing patterns and spending in Medicare Part D.”  http://www.ncbi.nlm.nih.gov/pubmed/27385238

“Medical Marijuana Laws Reduce Prescription Medication Use In Medicare Part D” https://www.healthaffairs.org/doi/abs/10.1377/hlthaff.2015.1661 

The endocannabinoid system – a target for the treatment of LUTS?

“Lower urinary tract symptoms (LUTS) are common in all age groups and both sexes, resulting in tremendous personal suffering and a substantial burden to society.

Antimuscarinic drugs are the mainstay of symptom management in patients with LUTS, although their clinical utility is limited by the high prevalence of adverse effects, which often limit patients’ long-term adherence to these agents.

Data from controversial studies in the 1990s revealed the positive effects of marijuana-based compounds on LUTS, and sparked an interest in the possibility of treating bladder disorders with cannabis.

Increased understanding of cannabinoid receptor pharmacology and the discovery of endogenous ligands of these receptors has prompted debate and further research into the clinical utility of exogenous cannabinoid receptor agonists relative to the unwanted psychotropic effects of these agents.

Currently, the endocannabinoid system is considered as a potential drug target for pharmacological management of LUTS, with a more favourable adverse event profile than antimuscarinic agents.”

http://www.ncbi.nlm.nih.gov/pubmed/27377161