Proximal Tubular Cannabinoid-1 Receptor Regulates Obesity-Induced CKD.

Figure

“Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB1R) induces nephropathy, whereas CB1R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB1R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid β-oxidation. Collectively, these findings indicate that renal proximal tubule cell CB1R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway.”

https://www.ncbi.nlm.nih.gov/pubmed/28860163

http://jasn.asnjournals.org/content/early/2017/08/30/ASN.2016101085

Characterization of Structurally Novel G Protein Biased CB1 Agonists: Implications for Drug Development.

Cover image

“The human cannabinoid subtype 1 receptor (hCB1R) is highly expressed in the CNS and serves as a therapeutic target for endogenous ligands as well as plant-derived and synthetic cannabinoids. Unfortunately, acute use of hCB1R agonists produces unwanted psychotropic effects and chronic administration results in development of tolerance and dependence, limiting the potential clinical use of these ligands. Studies in β-arrestin knockout mice suggest that interaction of certain GPCRs, including μ-, δ-, κ-opioid and hCB1Rs, with β-arrestins might be responsible for several adverse effects produced by agonists acting at these receptors. Indeed, agonists that bias opioid receptor activation toward G-protein, relative to β-arrestin signaling, produce less severe adverse effects. These observations indicate that therapeutic utility of agonists acting at hCB1Rs might be improved by development of G-protein biased hCB1R agonists. Our laboratory recently reported a novel class of indole quinulidinone (IQD) compounds that bind cannabinoid receptors with relatively high affinity and act with varying efficacy. The purpose of this study was to determine whether agonists in this novel cannabinoid class exhibit ligand bias at hCB1 receptors. Our studies found that a novel IQD-derived hCB1receptor agonist PNR-4-20 elicits robust G protein-dependent signaling, with transduction ratios similar to the non-biased hCB1R agonist CP-55,940. In marked contrast to CP-55,940, PNR-4-20 produces little to no β-arrestin 2 recruitment. Quantitative calculation of bias factors indicates that PNR-4-20 exhibits from 5.4-fold to 29.5-fold bias for G protein, relative to β-arrestin 2 signaling (when compared to G protein activation or inhibition of forskolin-stimulated cAMP accumulation, respectively). Importantly, as expected due to reduced β-arrestin 2 recruitment, chronic exposure of cells to PNR-4-20 results in significantly less desensitization and down-regulation of hCB1Rs compared to similar treatment with CP-55,940. PNR-4-20 (i.p.) is active in the cannabinoid tetrad in mice and chronic treatment results in development of less persistent tolerance and no significant withdrawal signs when compared to animals repeatedly exposed to the non-biased full agoinst JWH-018 or Δ9-THC. Finally, studies of a structurally similar analog PNR- 4-02 show that it is also a G protein biased hCB1R agonist. It is predicted that cannabinoid agonists that bias hCB1R activation toward G protein, relative to β-arrestin 2 signaling, will produce fewer and less severe adverse effects both acutely and chronically.”

https://www.ncbi.nlm.nih.gov/pubmed/28838808

http://www.sciencedirect.com/science/article/pii/S1043661816314244

Cannabinoids as Anticancer Drugs.

Advances in Pharmacology

“The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics’ effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression.”

https://www.ncbi.nlm.nih.gov/pubmed/28826542

http://www.sciencedirect.com/science/article/pii/S105435891730039X?via%3Dihub

Cannabinoids and Pain: Sites and Mechanisms of Action.

Advances in Pharmacology

“The endocannabinoid system, consisting of the cannabinoid1 receptor (CB1R) and cannabinoid2 receptor (CB2R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB1R and CB2R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB1R agonists, CB2R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB1R/non-CB2R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28826543

http://www.sciencedirect.com/science/article/pii/S1054358917300443?via%3Dihub

Functional Selectivity at Cannabinoid Receptors.

Advances in Pharmacology

“It is now clear that, in contrast to traditional descriptions of G protein-coupled receptor signaling, agonists can activate or inhibit characteristic patterns of downstream effector pathways depending on their structures and the conformational changes induced in the receptor. This is referred to as functional selectivity (also known as agonist-directed trafficking, ligand-induced differential signaling, or biased agonism). It is important because even small structural differences can result in significant variations in overall agonist effects (wanted and unwanted) depending on which postreceptor signaling systems are engaged by each agonist/receptor pairing. In addition to the canonical signaling pathways mediated by Gi/o proteins, CB1 and CB2 receptor agonists can have effects via differential activation not only of Gi subtypes but also of Gs and Gq/11 proteins. For example, the classical cannabinoid HU-210 produces maximal activation of both Gi and Go proteins, while the endocannabinoid anandamide and aminoalkylindole WIN 55,212 both produce maximal activation of Gi, but submaximal activation of Go. Cannabinoid agonists can also signal differentially via β-arrestins coupled to mitogen-activated protein kinases, subsequently promoting varying degrees of receptor internalization and agonist desensitization. A recent extensive characterization of the molecular pharmacology of CB2 agonists (Soethoudt et al., 2017) identified marked differences (bias) in the ability of certain agonists to activate distinct signaling pathways (cAMP accumulation, ERK phosphorylation, GIRK activation, GTPγS binding, and β-arrestin recruitment) and to cause off-target effects, exemplifying the need to evaluate functional selectivity in agonist drug development.”

https://www.ncbi.nlm.nih.gov/pubmed/28826535

http://www.sciencedirect.com/science/article/pii/S1054358917300285?via%3Dihub

CB1 and CB2 Receptor Pharmacology.

Advances in Pharmacology

“The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.”

https://www.ncbi.nlm.nih.gov/pubmed/28826534

http://www.sciencedirect.com/science/article/pii/S1054358917300340?via%3Dihub

GPR55: A therapeutic target for Parkinson’s disease?

Cover image

“The GPR55 receptor is expressed abundantly in the brain, especially in the striatum, suggesting it might fulfill a role in motor function. Indeed, motor behavior is impaired in mice lacking GPR55, which also display dampened inflammatory responses.

Abnormal-cannabidiol (Abn-CBD), a synthetic cannabidiol (CBD) isomer, is a GPR55 agonist that may serve as a therapeutic agent in the treatment of inflammatory diseases.

In this study, we explored whether modulating GPR55 could also represent a therapeutic approach for the treatment of Parkinson’s disease (PD).

These results demonstrate for the first time that activation of GPR55 might be beneficial in combating PD.”

https://www.ncbi.nlm.nih.gov/pubmed/28807673

http://www.sciencedirect.com/science/article/pii/S0028390817303842

“The orphan receptor GPR55 is a novel cannabinoid receptor”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095107/

Neuroprotective activity of cannabinoid receptor-2 against oxidative stress and apoptosis in rat pups having experimentally-induced congenital hypothyroidism.

Image result for Developmental Neurobiology

“In this study, it was aimed to show the cannabinoid receptor-2 (CB2) role, which is a part of neuroprotective endocannabinoidal system, against increasing nitric oxide synthetase (iNOS, eNOS) levels and the apoptotic activity (caspase-3, caspase-9 and DNA in situ fragmentation) within the postnatal critical period in pups of pregnant rats with artificially induced maternal thyroid hormone (TH) deficiency.

In conclusion, apoptosis was triggered via oxidative stress in hypothyroid pups. Accordingly, neuroprotective activity of CB2 receptors were motivated spontaneously to resist to CNS lesions during the first 3 weeks of postnatal period.”

https://www.ncbi.nlm.nih.gov/pubmed/28799288

Cannabinoid receptor 2-63 RR variant is independently associated with severe necroinflammation in HIV/HCV coinfected patients.

 

Image result for plos one 10th anniversary

“This is the first study to analyze the impact of the rs35761398 variant of the CNR2 gene leading to the substitution of GLN (Q) of codon 63 of the cannabinoid receptor 2 (CB2) with ARG (R) on the clinical presentation of chronic hepatitis in HIV/HCV coinfected patients.

This study shows interesting interplay between the CB2-RR variant and liver necroinflammation in chronic hepatitis patients with HIV/HCV coinfection, an observation of clinical value that coincides with the interest in the use of the CB2 agonists and antagonists in clinical practice emerging from the literature.”

Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice.

Cover image

“Painful peripheral neuropathy is a common side effect of paclitaxel (PTX). The use of analgesics is an important component for management of PTX-induced peripheral neuropathy (PINP). However, currently employed analgesics have several side effects and are poorly effective.

β-caryophyllene (BCP), a dietary selective CB2 agonist, has shown analgesic effect in neuropathic pain models, but its role in chemotherapy-induced neuropathic pain has not yet been investigated. Herein, we used the mouse model of PINP to show the therapeutic effects of BCP in this neuropathy.

Our findings show that BCP effectively attenuated PINP, possibly through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release. Taken together, our results suggest that BCP could be used to attenuate the establishment and/or treat PINP.”  https://www.ncbi.nlm.nih.gov/pubmed/28729222

http://www.sciencedirect.com/science/article/pii/S0028390817303465

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934